137 research outputs found
Hydrogen-Related Conversion Processes of Ge-Related Point Defects in Silica Triggered by UV Laser Irradiation
The conversion processes of Ge-related point defects triggered in amorphous
SiO2 by 4.7eV laser exposure were investigated. Our study has focused on the
interplay between the (=Ge•-H) H(II) center and the twofold coordinated
Ge defect (=Ge••). The former is generated in the post-irradiation
stage, while the latter decays both during and after exposure. The
post-irradiation decay kinetics of =Ge•• is isolated and found to
be anti-correlated to the growth of H(II), at least at short times. From this
finding it is suggested that both processes are due to trapping of radiolytic
H0 at the diamagnetic defect site. Furthermore, the anti-correlated behavior is
preserved also under repeated irradiation: light at 4.7eV destroys the already
formed H(II) centers and restore their precursors =Ge••. This
process leads to repeatability of the post-irradiation kinetics of the two
species after multiple laser exposures. A comprehensive scheme of chemical
reactions explaining the observed post-irradiation processes is proposed and
tested against experimental data.Comment: 25 pages, 7 figures, submitted to Phys. Rev.
The methodology and model for in-process inventories calculation in the conditions of metallurgy production
In the paper a methodology and model for “In-process inventories calculation“ in the metallurgy production conditions is described. The model was designed based on the factors affecting the in-process inventories levels. The inprocess inventories levels have to respect different efficiency of the aggregates in sequence, idle times, technological safety and the production continuity. For the calculation of the in-production inventories levels a dynamic model was designed. In the paper the results are compared from the analyses of real metallurgical production division and this model too
I–II Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels
The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cavβ subunits and plays significant roles in channel function, including trafficking the α1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (−30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3
Glaucoma Patient Expression of Medication Problems and Nonadherence
The purpose of this study was to examine if patient demographic factors influenced self-reporting of medication side effects, difficulty with drop instillation and nonadherence to glaucoma therapy
Orientation of the Calcium Channel β Relative to the α12.2 Subunit Is Critical for Its Regulation of Channel Activity
BACKGROUND: The Ca(v)beta subunits of high voltage-activated Ca(2+) channels control the trafficking and biophysical properties of the alpha(1) subunit. The Ca(v)beta-alpha(1) interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID) be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(1)2.2, then testing for Ca(v)beta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6). This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(v)beta with respect to alpha(1)2.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively). Again, the ability of Ca(v)beta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(v)beta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(v)beta subunit relative to the alpha(1)2.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(v)beta to regulate channel activity
Activation of heme biosynthesis by a small molecule that is toxic to fermenting Staphylococcus aureus
Staphylococcus aureus is a significant infectious threat to global public health. Acquisition or synthesis of heme is required for S. aureus to capture energy through respiration, but an excess of this critical cofactor is toxic to bacteria. S. aureus employs the heme sensor system (HssRS) to overcome heme toxicity; however, the mechanism of heme sensing is not defined. Here, we describe the identification of a small molecule activator of HssRS that induces endogenous heme biosynthesis by perturbing central metabolism. This molecule is toxic to fermenting S. aureus, including clinically relevant small colony variants. The utility of targeting fermenting bacteria is exemplified by the fact that this compound prevents the emergence of antibiotic resistance, enhances phagocyte killing, and reduces S. aureus pathogenesis. Not only is this small molecule a powerful tool for studying bacterial heme biosynthesis and central metabolism; it also establishes targeting of fermentation as a viable antibacterial strategy
Измерительная ячейка для исследования СВЧ-свойств дельта-легированных алмазных образцов
The method of measurement of microwave parameter of delta-doped diamond samples over a broad frequency range is offered. Nicholson-Ross's algorithm is the cornerstone of a method of measurement. The simulation of S-parameters of the measuring cell based on symmetric stripline is carried out.Предложен метод измерения СВЧ-параметров дельта-легированных алмазных образцов в широком диапазоне частот. В основе метода измерения лежит алгоритм Николсона-Росса. Проведено моделирование S-параметров измерительной ячейки на основе симметричной полосковой линии передачи
Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides
Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn=3200 g mol-1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics simulations (MDS), Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (>0.5%) inhibited biofilm formation, demonstrating a significant reduction in both biomass and biofilm height (17.8 vs. 5.5 µm; P <0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of sugar residues, and extracellular (e)DNA (P <0.05) with a corresponding increase in nanoparticle diffusion (P<0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MDS. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections
- …