7 research outputs found
Numerical and experimental study of liquid metal stirring by rotating permanent magnets
In this work, we study liquid gallium stirring by rotating permanent magnets. We demonstrate possibility of easily creating different flow patterns by rotating permanent magnets, which can be industrially important for controlling heat and mass transfer processes in the system. Unlike the typical approach of simulating magnet rotation as a transient problem and time-averaging the Lorentz forces, we solve the magnet rotation as a harmonic (frequency domain) problem, which leads to forces equal to time-averaged ones and decreases the simulation time considerably. Numerical results are validated using qualitative flow structure results from the neutron radiography visualization of tracer particles and quantitative data from Ultrasound Doppler velocimetry
On the Use of Hermite Functions for the Vlasov–Poisson System
We apply a second-order semi-Lagrangian spectral method for the Vlasov–Poisson system, by implementing Hermite functions in the approximation of the distribution function with respect to the velocity variable. Numerical tests are performed on a standard benchmark problem, namely the two-stream instability test case. The approach uses two independent sets of Hermite functions, based on Gaussian weights symmetrically placed with respect to the zero velocity level. An experimental analysis is conducted to detect a reasonable location of the two weights in order to improve the approximation properties