12,440 research outputs found

    On the origin of the reversed vortex ratchet motion

    Full text link
    We experimentally demonstrate that the origin of multiply reversed rectified vortex motion in an asymmetric pinning landscape is a consequence not only of the vortex-vortex interactions but also essentially depends on the ratio between the characteristic interaction distance and the period of the asymmetric pinning potential. Our system consists of an Al film deposited on top of a square array of size-graded magnetic dots with a constant lattice period a=2\mu m. Four samples with different periods of the size gradient d were investigated. For large d the dc voltage Vdc recorded under a sinusoidal ac excitation indicates that the average vortex drift is from bigger to smaller dots for all explored positive fields. As d is reduced a series of sign reversals in the dc response are observed as a function of field. We show that the number of sign reversals increases as d decreases. These findings are in agreement with recent computer simulations and illustrate the relevance of the different characteristic lengths for the vortex rectification effects.Comment: accepted in Phys. Rev. Let

    Reversible Vortex Ratchet Effects and Ordering in Superconductors with Simple Asymmetric Potential Arrays

    Full text link
    We demonstrate using computer simulations that the simplest vortex ratchet system for type-II superconductors with artificial pinning arrays, an asymmetric one-dimensional (1D) potential array, exhibits the same features as more complicated two-dimensional vortex ratchets that have been studied in recent experiments. We show that the 1D geometry, originally proposed by Lee et al. [Nature 400, 337 (1999)], undergoes multiple reversals in the sign of the ratchet effect as a function of vortex density, substrate strength, and ac drive amplitude, and that the sign of the ratchet effect is related to the type of vortex lattice structure present. When the vortex lattice is highly ordered, an ordinary vortex ratchet effect occurs which is similar to the response of an isolated particle in the same ratchet geometry. In regimes where the vortices form a smectic or disordered phase, the vortex-vortex interactions are relevant and we show with force balance arguments that the ratchet effect can reverse in sign. The dc response of this system features a reversible diode effect and a variety of vortex states including triangular, smectic, disordered and square.Comment: 10 pages, 12 postscript figures. Version to appear in Phys. Rev.

    Coherent and Incoherent Vortex Flow States in Crossed Channels

    Full text link
    We examine vortex flow states in periodic square pinning arrays with one row and one column of pinning sites removed to create an easy flow crossed channel geometry. When a drive is simultaneously applied along both major symmetry axes of the pinning array such that vortices move in both channels, a series of coherent flow states develop in the channel intersection at rational ratios of the drive components in each symmetry direction when the vortices can cross the intersection without local collisions. The coherent flow states are correlated with a series of anomalies in the velocity force curves, and in some cases can produce negative differential conductivity. The same general behavior could also be realized in other systems including colloids, particle traffic in microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure

    A study of waves in the earth's bow shock

    Get PDF
    The perturbation vectors of waves up and downstream from the region of maximum compression in the bow shock were examined on OGO-5 under particularly steady solar wind conditions. The polarization of the upstream waves was RH, circular and of the downstream waves LH, elliptical in the spacecraft frame. By observing that the polarization of the waves remained unchanged as the shock motion swept the wave structure back and forth across the satellite three times in eight minutes, it was found that the waves were not stationary in the shock frame. A study of the methods of determining the shock normal indicates that the normal estimated from a shock model should be superior to one based upon magnetic coplanarity. The propagation vectors of the waves examined did not coincide with the shock model normal, the average magnetic field, or the plasma flow velocity. However, the major axis of the polarization ellipse of the downstream wave was nearly parallel to the upstream propagation vector

    Fibrillar templates and soft phases in systems with short-range dipolar and long-range interactions

    Full text link
    We analyze the thermal fluctuations of particles that have a short-range dipolar attraction and a long-range repulsion. In an inhomogeneous particle density region, or "soft phase," filamentary patterns appear which are destroyed only at very high temperatures. The filaments act as a fluctuating template for correlated percolation in which low-energy excitations can move through the stable pattern by local rearrangements. At intermediate temperatures, dynamically averaged checkerboard states appear. We discuss possible implications for cuprate superconducting and related materials.Comment: 4 pages, 4 postscript figures. Discussion of implications for experiment and theory has been expande

    Ratchet Cellular Automata

    Full text link
    In this work we propose a ratchet effect which provides a general means of performing clocked logic operations on discrete particles, such as single electrons or vortices. The states are propagated through the device by the use of an applied AC drive. We numerically demonstrate that a complete logic architecture is realizable using this ratchet. We consider specific nanostructured superconducting geometries using superconducting materials under an applied magnetic field, with the positions of the individual vortices in samples acting as the logic states. These devices can be used as the building blocks for an alternative microelectronic architecture.Comment: 4 pages, 3 figure

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic
    • …
    corecore