12,520 research outputs found
On the origin of the reversed vortex ratchet motion
We experimentally demonstrate that the origin of multiply reversed rectified
vortex motion in an asymmetric pinning landscape is a consequence not only of
the vortex-vortex interactions but also essentially depends on the ratio
between the characteristic interaction distance and the period of the
asymmetric pinning potential. Our system consists of an Al film deposited on
top of a square array of size-graded magnetic dots with a constant lattice
period a=2\mu m. Four samples with different periods of the size gradient d
were investigated. For large d the dc voltage Vdc recorded under a sinusoidal
ac excitation indicates that the average vortex drift is from bigger to smaller
dots for all explored positive fields. As d is reduced a series of sign
reversals in the dc response are observed as a function of field. We show that
the number of sign reversals increases as d decreases. These findings are in
agreement with recent computer simulations and illustrate the relevance of the
different characteristic lengths for the vortex rectification effects.Comment: accepted in Phys. Rev. Let
Reversible Vortex Ratchet Effects and Ordering in Superconductors with Simple Asymmetric Potential Arrays
We demonstrate using computer simulations that the simplest vortex ratchet
system for type-II superconductors with artificial pinning arrays, an
asymmetric one-dimensional (1D) potential array, exhibits the same features as
more complicated two-dimensional vortex ratchets that have been studied in
recent experiments. We show that the 1D geometry, originally proposed by Lee et
al. [Nature 400, 337 (1999)], undergoes multiple reversals in the sign of the
ratchet effect as a function of vortex density, substrate strength, and ac
drive amplitude, and that the sign of the ratchet effect is related to the type
of vortex lattice structure present. When the vortex lattice is highly ordered,
an ordinary vortex ratchet effect occurs which is similar to the response of an
isolated particle in the same ratchet geometry. In regimes where the vortices
form a smectic or disordered phase, the vortex-vortex interactions are relevant
and we show with force balance arguments that the ratchet effect can reverse in
sign. The dc response of this system features a reversible diode effect and a
variety of vortex states including triangular, smectic, disordered and square.Comment: 10 pages, 12 postscript figures. Version to appear in Phys. Rev.
Coherent and Incoherent Vortex Flow States in Crossed Channels
We examine vortex flow states in periodic square pinning arrays with one row
and one column of pinning sites removed to create an easy flow crossed channel
geometry. When a drive is simultaneously applied along both major symmetry axes
of the pinning array such that vortices move in both channels, a series of
coherent flow states develop in the channel intersection at rational ratios of
the drive components in each symmetry direction when the vortices can cross the
intersection without local collisions. The coherent flow states are correlated
with a series of anomalies in the velocity force curves, and in some cases can
produce negative differential conductivity. The same general behavior could
also be realized in other systems including colloids, particle traffic in
microfluidic devices, or Wigner crystals in crossed one-dimensional channels.Comment: 5 pages, 4 postscript figure
A study of waves in the earth's bow shock
The perturbation vectors of waves up and downstream from the region of maximum compression in the bow shock were examined on OGO-5 under particularly steady solar wind conditions. The polarization of the upstream waves was RH, circular and of the downstream waves LH, elliptical in the spacecraft frame. By observing that the polarization of the waves remained unchanged as the shock motion swept the wave structure back and forth across the satellite three times in eight minutes, it was found that the waves were not stationary in the shock frame. A study of the methods of determining the shock normal indicates that the normal estimated from a shock model should be superior to one based upon magnetic coplanarity. The propagation vectors of the waves examined did not coincide with the shock model normal, the average magnetic field, or the plasma flow velocity. However, the major axis of the polarization ellipse of the downstream wave was nearly parallel to the upstream propagation vector
Fibrillar templates and soft phases in systems with short-range dipolar and long-range interactions
We analyze the thermal fluctuations of particles that have a short-range
dipolar attraction and a long-range repulsion. In an inhomogeneous particle
density region, or "soft phase," filamentary patterns appear which are
destroyed only at very high temperatures. The filaments act as a fluctuating
template for correlated percolation in which low-energy excitations can move
through the stable pattern by local rearrangements. At intermediate
temperatures, dynamically averaged checkerboard states appear. We discuss
possible implications for cuprate superconducting and related materials.Comment: 4 pages, 4 postscript figures. Discussion of implications for
experiment and theory has been expande
Ratchet Cellular Automata
In this work we propose a ratchet effect which provides a general means of
performing clocked logic operations on discrete particles, such as single
electrons or vortices. The states are propagated through the device by the use
of an applied AC drive. We numerically demonstrate that a complete logic
architecture is realizable using this ratchet. We consider specific
nanostructured superconducting geometries using superconducting materials under
an applied magnetic field, with the positions of the individual vortices in
samples acting as the logic states. These devices can be used as the building
blocks for an alternative microelectronic architecture.Comment: 4 pages, 3 figure
On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60
A simple planar model for an orientational ordering of threefold molecules on
a triangular lattice modelling a close-packed (111) plane of fullerite is
considered. The system has 3-sublattice ordered ground state which includes 3
different molecular orientations. There exist 6 kinds of orientational domains,
which are related with a permutation or a mirror symmetry. Interdomain walls
are found to be rather narrow.
The model molecules have two-well orientational potential profiles, which are
slightly effected by a presence of a straight domain wall. The reason is a
stronger correlation between neighbour molecules in triangular lattice versus
previously considered square lattice
A considerable reduction (up to one order) of orientational interwell
potential barrier is found in the core regions of essentially two-dimentional
potential defects, such as a three-domain boundary or a kink in the domain
wall. For ultimately uncorrelated nearest neighbours the height of the
interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic
- …