10,039 research outputs found

    Undamped nonequilibrium dynamics of a nondegenerate Bose gas in a 3D isotropic trap

    Full text link
    We investigate anomalous damping of the monopole mode of a non-degenerate 3D Bose gas under isotropic harmonic confinement as recently reported by the JILA TOP trap experiment [D. S. Lob- ser, A. E. S. Barentine, E. A. Cornell, and H. J. Lewandowski (in preparation)]. Given a realistic confining potential, we develop a model for studying collective modes that includes the effects of anharmonic corrections to a harmonic potential. By studying the influence of these trap anharmonicities throughout a range of temperatures and collisional regimes, we find that the damping is caused by the joint mechanisms of dephasing and collisional relaxation. Furthermore, the model is complimented by Monte Carlo simulations which are in fair agreement with data from the JILA experiment.Comment: 11 pages, 6 figure

    Darwin Meets Einstein: LISA Data Analysis Using Genetic Algorithms

    Full text link
    This work presents the first application of the method of Genetic Algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs represent such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.Comment: 8 pages, 12 figure

    Quantum Kinetic Theory III: Simulation of the Quantum Boltzmann Master Equation

    Get PDF
    We present results of simulations of a em quantum Boltzmann master equation (QBME) describing the kinetics of a dilute Bose gas confined in a trapping potential in the regime of Bose condensation. The QBME is the simplest version of a quantum kinetic master equations derived in previous work. We consider two cases of trapping potentials: a 3D square well potential with periodic boundary conditions, and an isotropic harmonic oscillator. We discuss the stationary solutions and relaxation to equilibrium. In particular, we calculate particle distribution functions, fluctuations in the occupation numbers, the time between collisions, and the mean occupation numbers of the one-particle states in the regime of onset of Bose condensation.Comment: 12 pages, 15 figure

    A Bohmian approach to quantum fractals

    Get PDF
    A quantum fractal is a wavefunction with a real and an imaginary part continuous everywhere, but differentiable nowhere. This lack of differentiability has been used as an argument to deny the general validity of Bohmian mechanics (and other trajectory--based approaches) in providing a complete interpretation of quantum mechanics. Here, this assertion is overcome by means of a formal extension of Bohmian mechanics based on a limiting approach. Within this novel formulation, the particle dynamics is always satisfactorily described by a well defined equation of motion. In particular, in the case of guidance under quantum fractals, the corresponding trajectories will also be fractal.Comment: 19 pages, 3 figures (revised version

    Spin dependent observable effect for free particles using the arrival time distribution

    Full text link
    The mean arrival time of free particles is computed using the quantum probability current. This is uniquely determined in the non-relativistic limit of Dirac equation, although the Schroedinger probability current has an inherent non-uniqueness. Since the Dirac probability current involves a spin-dependent term, an arrival time distribution based on the probability current shows an observable spin-dependent effect, even for free particles. This arises essentially from relativistic quantum dynamics, but persists even in the non-relativistic regime.Comment: 5 Latex pages, 2.eps figures; discussions sharpened and references added; accepted for publication in Physical Review

    Line emission from gamma-ray burst environments

    Get PDF
    The time and angle dependent line and continuum emission from a dense torus around a cosmological gamma-ray burst source is simulated, taking into account photoionization, collisional ionization, recombination, and electron heating and cooling due to various processes. The importance of the hydrodynamical interaction between the torus and the expanding blast wave is stressed. Due to the rapid deceleration of the blast wave as it interacts with the dense torus, the material in the torus will be illuminated by a drastically different photon spectrum than observable through a low-column-density line of sight, and will be heated by the hydrodynamical interaction between the blast wave and the torus. A model calculation to reproduce the Fe K-alpha line emission observed in the X-ray afterglow of GRB 970508 is presented. The results indicate that ~ 10^{-4} solar masses of iron must be concentrated in a region of less than 10^{-3} pc. The illumination of the torus material due to the hydrodynamic interaction of the blast wave with the torus is the dominant heating and ionization mechanism leading to the formation of the iron line. These results suggest that misaligned GRBs may be detectable as X-ray flashes with pronounced iron emission line features.Comment: Accepted for publication in ApJ. Updated recombination rate data; discussion on element abundances added; references update

    The quadratic spinor Lagrangian, axial torsion current, and generalizations

    Get PDF
    We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field (Weyl, Majorana, flagpole, or flag-dipole spinor fields) yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion 1-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.Comment: 9 pages, RevTeX, to be published in Int.J.Mod.Phys.D (2007
    corecore