21,672 research outputs found
Aerodynamics of thrust vectoring
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction
Calculation of aerodynamic characteristics of airplane configurations at high angles of attack
Calculation of longitudinal and lateral directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with corrections of high angle of attack phenomena; namely, vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the three dimensional lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at higher angles of attack are discussed
ATLAS Upgrade Plans for the SLHC
The proposed luminosity upgrade to the LHC imposes significant challenges on the LHC detectors: their design must function within a much harder radiation environment and yet, preserve, if not improve, their ability to maximize the upgrade's physics opportunities. In addition, they must be designed, constructed, and installed on a tight timescale in order to be ready for operation in 2016. For ATLAS, the upgrade entails a major redesign of the tracking systems, and possibly the forward calorimeters and muon detectors as well. Efforts have already begun to address these issues
Reduced 30% scanning time 3D multiplexer integrated circuit applied to large array format 20KHZ frequency inkjet print heads
Enhancement of the number and array density of nozzles within an inkjet head
chip is one of the keys to raise the printing speed and printing resolutions.
However, traditional 2D architecture of driving circuits can not meet the
requirement for high scanning speed and low data accessing points when nozzle
numbers greater than 1000. This paper proposes a novel architecture of
high-selection-speed three-dimensional data registration for inkjet
applications. With the configuration of three-dimensional data registration,
the number of data accessing points as well as the scanning lines can be
greatly reduced for large array inkjet printheads with nozzles numbering more
than 1000. This IC (Integrated Circuit) architecture involves three-dimensional
multiplexing with the provision of a gating transistor for each ink firing
resistor, where ink firing resistors are triggered only by the selection of
their associated gating transistors. Three signals: selection (S), address (A),
and power supply (P), are employed together to activate a nozzle for droplet
ejection. The smart printhead controller has been designed by a 0.35 um CMOS
process with a total circuit area, 2500 x 500 microm2, which is 80% of the
cirucuit area by 2D configuration for 1000 nozzles. Experiment results
demonstrate the functionality of the fabricated IC in operation, signal
transmission and a potential to control more than 1000 nozzles with only 31
data access points and reduced 30% scanning time.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Orbifold cup products and ring structures on Hochschild cohomologies
In this paper we study the Hochschild cohomology ring of convolution algebras
associated to orbifolds, as well as their deformation quantizations. In the
first case the ring structure is given in terms of a wedge product on twisted
polyvectorfields on the inertia orbifold. After deformation quantization, the
ring structure defines a product on the cohomology of the inertia orbifold. We
study the relation between this product and an -equivariant version of the
Chen--Ruan product. In particular, we give a de Rham model for this equivariant
orbifold cohomology
Recommended from our members
Mobile Paving System (MPS): A New Large Scale Freeform Fabrication Method
In the last decade, significant opportunities for automation have been identified in the area of
construction. Soaring labor and material costs have driven multiple research efforts in
construction automation. In this paper, we present a novel means for construction automation
that involves the fusion of the rapid prototyping, controls and mechatronics technologies. The
resultant autonomous construction mechanism has been designed for commercial applications.
Mobile Paving System (MPS) is a new freeform fabrication process which is capable of rapidly
producing variable profiles such as curbs and sidewalks out of materials like cement and asphalt.
Path generation and guidance of the construction operation is controlled by a mobile robot. This
article presents an overview of research and development efforts that are aimed at establishing
the feasibility and the potential of the process.Mechanical Engineerin
LISP based simulation generators for modeling complex space processes
The development of a simulation assistant for modeling discrete event processes is presented. Included are an overview of the system, a description of the simulation generators, and a sample process generated using the simulation assistant
Reaching Approximate Byzantine Consensus with Multi-hop Communication
We address the problem of reaching consensus in the presence of Byzantine
faults. In particular, we are interested in investigating the impact of
messages relay on the network connectivity for a correct iterative approximate
Byzantine consensus algorithm to exist. The network is modeled by a simple
directed graph. We assume a node can send messages to another node that is up
to hops away via forwarding by the intermediate nodes on the routes, where
is a natural number. We characterize the necessary and
sufficient topological conditions on the network structure. The tight
conditions we found are consistent with the tight conditions identified for
, where only local communication is allowed, and are strictly weaker for
. Let denote the length of a longest path in the given network. For
and undirected graphs, our conditions hold if and only if and the node-connectivity of the given graph is at least , where
is the total number of nodes and is the maximal number of Byzantine
nodes; and for and directed graphs, our conditions is equivalent to
the tight condition found for exact Byzantine consensus.
Our sufficiency is shown by constructing a correct algorithm, wherein the
trim function is constructed based on investigating a newly introduced minimal
messages cover property. The trim function proposed also works over
multi-graphs.Comment: 24 pages, 1 figure. arXiv admin note: text overlap with
arXiv:1203.188
Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.
Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing
Calculation of aerodynamic characteristics at high angles of attack for airplane configurations
The primary objective is to determine how an airplane configuration should be modeled to predict both longitudinal and lateral aerodynamic characteristics at high angles of attack. A generic fighter model, an F-16 and an F-18 configuration with leading edge flap deflection and an F-106B configuration were investigated. Furthermore, the F-16XL and X-29 configurations were examined. Some calculated results are given
- …
