65 research outputs found

    Small-Angle Excess Scattering: Glassy Freezing or Local Orientational Ordering?

    Full text link
    We present Monte Carlo simulations of a dense polymer melt which shows glass-transition-like slowing-down upon cooling, as well as a build up of nematic order. At small wave vectors q this model system shows excess scattering similar to that recently reported for light-scattering experiments on some polymeric and molecular glass-forming liquids. For our model system we can provide clear evidence that this excess scattering is due to the onset of short-range nematic order and not directly related to the glass transition.Comment: 3 Pages of Latex + 4 Figure

    Interface localisation-delocalisation transition in a symmetric polymer blend: a finite-size scaling Monte Carlo study

    Full text link
    Using extensive Monte Carlo simulations we study the phase diagram of a symmetric binary (AB) polymer blend confined into a thin film as a function of the film thickness D. The monomer-wall interactions are short ranged and antisymmetric, i.e, the left wall attracts the A-component of the mixture with the same strength as the right wall the B-component, and give rise to a first order wetting transition in a semi-infinite geometry. The phase diagram and the crossover between different critical behaviors is explored. For large film thicknesses we find a first order interface localisation/delocalisation transition and the phase diagram comprises two critical points, which are the finite film width analogies of the prewetting critical point. Using finite size scaling techniques we locate these critical points and present evidence of 2D Ising critical behavior. When we reduce the film width the two critical points approach the symmetry axis ϕ=1/2\phi=1/2 of the phase diagram and for D2RgD \approx 2 R_g we encounter a tricritical point. For even smaller film thickness the interface localisation/delocalisation transition is second order and we find a single critical point at ϕ=1/2\phi=1/2. Measuring the probability distribution of the interface position we determine the effective interaction between the wall and the interface. This effective interface potential depends on the lateral system size even away from the critical points. Its system size dependence stems from the large but finite correlation length of capillary waves. This finding gives direct evidence for a renormalization of the interface potential by capillary waves in the framework of a microscopic model.Comment: Phys.Rev.

    Path integral for half-binding potentials as quantum mechanical analog for black hole partition functions

    Full text link
    The semi-classical approximation to black hole partition functions is not well-defined, because the classical action is unbounded and the first variation of the uncorrected action does not vanish for all variations preserving the boundary conditions. Both problems can be solved by adding a Hamilton-Jacobi counterterm. I show that the same problem and solution arises in quantum mechanics for half-binding potentials.Comment: 6 pages, proceedings contribution to "Path integrals - New Trends and Perspectives", Dresden, September 200

    Priority species to support the functional integrity of coral reefs

    Get PDF
    Ecosystem-based management on coral reefs has historically focussed on biodiversity conservation through the establishment of marine reserves, but it is increasingly recognised that a subset of species can be key to the maintenance of ecosystem processes and functioning. Specific provisions for these key taxa are essential to biodiversity conservation and resilience-based adaptive management. While a wealth of literature addresses ecosystem functioning on coral reefs, available information covers only a subset of specific taxa, ecological processes and environmental stressors. What is lacking is a comparative assessment across the diverse range of coral reef species to synthesise available knowledge to inform science and management. Here we employed expert elicitation coupled with a literature review to generate the first comprehensive assessment of 70 taxonomically diverse and functionally distinct coral reef species from microbes to top predators to summarise reef functioning. Although our synthesis is largely through the lens of the Great Barrier Reef, Australia, a particularly data-rich system, it is relevant to coral reefs in general. We use this assessment to evaluate which taxa drive processes that maintain a healthy reef and whether management of these taxa is considered a priority (i.e. are they vulnerable?) or is feasible (i.e. can they be managed?). Scientific certainty was scored to weight our recommendations, particularly when certainty was low. We use five case studies to highlight critical gaps in knowledge that limit our understanding of ecosystem functioning. To inform the development of novel management strategies and research objectives, we identify taxa that support positive interactions and enhance ecosystem performance, including those where these roles are currently underappreciated. We conclude that current initiatives effectively capture many priority taxa but that there is significant room to increase opportunities for underappreciated taxa in both science and management to maximally safeguard coral reef functioning

    Chapter 5 Priority Species to Support the Functional Integrity of Coral Reefs

    Get PDF
    Ecosystem-based management on coral reefs has historically focused on biodiversity conservation through the establishment of marine reserves, but it is increasingly recognised that a subset of species can be key to the maintenance of ecosystem processes and functioning. Specific provisions for these key taxa are essential to biodiversity conservation and resilience-based adaptive management. While a wealth of literature addresses ecosystem functioning on coral reefs, available information covers only a subset of specific taxa, ecological processes and environmental stressors. What is lacking is a comparative assessment across the diverse range of coral reef species to synthesise available knowledge to inform science and management. Here we employed expert elicitation coupled with a literature review to generate the first comprehensive assessment of 70 taxonomically diverse and functionally distinct coral reef species from microbes to top predators to summarise reef functioning. Although our synthesis is largely through the lens of the Great Barrier Reef, Australia, a particularly data-rich system, it is relevant to coral reefs in general. We use this assessment to evaluate which taxa drive processes that maintain a healthy reef, and whether or not management of these taxa is considered a priority (i.e. are they vulnerable?) or is feasible (i.e. can they be managed?). Scientific certainty was scored to weight our recommendations, particularly when certainty was low. We use five case studies to highlight critical gaps in knowledge that limit our understanding of ecosystem functioning. To inform the development of novel management strategies and research objectives, we identify taxa that support positive interactions and enhance ecosystem performance, including those where these roles are currently underappreciated. We conclude that current initiatives effectively capture many priority taxa, but that there is significant room to increase opportunities for underappreciated taxa in both science and management to maximally safeguard coral reef functioning

    5-Lipoxygenase Metabolic Contributions to NSAID-Induced Organ Toxicity

    Full text link

    Energy use in New Zealand households : report on the Year Three Analysis for the Household Energy End-Use Project (HEEP)

    No full text
    This report covers the activities of the third full year of the Household Energy End-Use Project (HEEP) - a major commitment by a number of funding and research organisations to develop, and make available, improved knowledge about the actual energy use of real New Zealand residential buildings used by real families. The objective of the research being undertaken for the HEEP project is to establish::- how much energy is used:- using which type of energy (electricity, gas etc.):- by which domestic appliances (including heating and domestic hot water):- at what time periods (season and time of day):- when used by which type of household (socio-demographic):- with which type(s) of occupant behaviour:- in order to deliver what level of energy service

    Zahnarzt-Patienten-Kommunikation unter Zeitdruck

    No full text

    odoratus

    No full text
    Cyperus odoratus Linnaeusrusty flatsedge;fragrant flatsedge;scented flatsedge;fragrant cyperus;fragrant umbrella sedgesouchet odorant;souchet d'EngelmannCyperus odoratusFreeway & Grant Road, Tucso

    Growth responses of branching versus massive corals to ocean warming on the Great Barrier Reef, Australia

    No full text
    As oceans continue to warm under climate change, understanding the differential growth responses of corals is increasingly important. Scleractinian corals exhibit a broad range of life-history strategies, yet few studies have explored interspecific variation in long-term growth rates under a changing climate. Here we studied growth records of two coral species with different growth forms, namely branching Isopora palifera and massive Porites spp. at an offshore reef (Myrmidon Reef) of the central Great Barrier Reef (GBR), Australia. Skeletal growth chronologies were constructed using a combination of X-radiographs, gamma densitometry, and trace element (Sr/Ca) analysis. General additive mixed-effect models (GAMMs) revealed that skeletal density of I. palifera declined linearly and significantly at a rate of 1.2% yr between 2002 and 2012. Calcification was stable between 2002 and 2009, yet declined significantly at a rate of 12% yr between 2009 and 2012 following anomalously high sea surface temperatures (SST). Skeletal density of massive Porites exhibited a significant non-linear response over the 11-year study period (2002−2012) in that density was temporarily reduced during the 2009–2010 anomalously hot years, while linear extension and calcification showed no significant trends. Linear extension, density and calcification rates of I. palifera increased to maximum growth of 26.7–26.9 °C, beyond which they declined. In contrast, calcification and linear extension of Porites exhibited no response to SST, but exhibited a significant linear decline in skeletal density with increasing SST. Our results reveal significant differences in coral growth patterns among coral growth forms, and highlight both the resistant nature of massive Porites and sensitivity of branching I. palifera. Future research should target a broad range of coral taxa within similar environments to provide a community-level response of ocean warming on coral reef communities
    corecore