247 research outputs found
Radioassay facilities at the STFC Boulby Underground Laboratory
For future low-background particle physics experiments, it will be essential to assay candidate detector materials using an array of assay techniques. To minimise the risk of sample contamination whilst moving between assay techniques, it is also sensible to minimise the distance between assay stations, particularly for non-destructive techniques where the sample may end up being installed into an experiment. The Boulby UnderGround Screening (BUGS) Facility comprises an array of germanium detectors, two XIA UltraLo-1800 surface-alpha counters, two radon emanation detectors and an Agilent ICP-MS system. This article describes each of these systems
Radioassay facilities at the STFC Boulby Underground Laboratory
For future low-background particle physics experiments, it will be essential to assay candidate detector materials using an array of assay techniques. To minimise the risk of sample contamination whilst moving between assay techniques, it is also sensible to minimise the distance between assay stations, particularly for non-destructive techniques where the sample may end up being installed into an experiment. The Boulby UnderGround Screening (BUGS) Facility comprises an array of germanium detectors, two XIA UltraLo-1800 surface-alpha counters, two radon emanation detectors and an Agilent ICP-MS system. This article describes each of these systems
PocketWATCH: design and operation of a multi-use test bed for water Cherenkov detector components in pure and gadolinium loaded water
The PocketWATCH facility is a unique multi-purpose test bed designed to replicate the conditions of large water Cherenkov detectors. Housed at the University of Sheffield, the facility consists of a light-tight 2000 L ultrapure water tank with purification and temperature control systems. Water temperature, resistivity, and UV attenuation in the tank are monitored and shown to be stable over time. The system is also shown to be compatible with a solution of 0.2% gadolinium sulfate, allowing further utility in testing equipment bound for the next generation neutrino and nucleon decay water Cherenkov particle detectors. The relevant water quality parameters are shown to be stable whilst running in Gd-mode, thereby providing a suitable test bed for hardware development in a realistic, ex situ environment
PocketWATCH: Design and operation of a multi-use test bed for water Cherenkov detector components in pure and gadolinium loaded water
The PocketWATCH facility is a unique multi-purpose test bed designed to replicate the conditions of large water Cherenkov detectors. Housed at the University of Sheffield, the facility consists of a light-tight 2000L ultrapure water tank with purification and temperature control systems. Water temperature, resistivity, and UV attenuation in the tank are monitored and shown to be stable over time. The system is also shown to be compatible with a solution of 0.2% gadolinium sulfate, allowing further utility in testing equipment bound for the next generation neutrino and nucleon decay water Cherenkov particle detectors. The relevant water quality parameters are shown to be stable whilst running in Gd-mode, thereby providing a suitable test bed for hardware development in a realistic, ex situ environment
Automating unobtrusive personalized services in ambient media environments
The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-013-1634-2In the age of ambient media, people are surrounded by lots of physical objects (media objects) for rendering the digital world in the natural environment. These media objects should interact with users in a way that is not disturbing for them. To address this issue, this work presents a design and automation strategy for augmenting the world around us with personalized ambient media services that behave in a considerate manner. That is, ambient services are capable of adjusting its obtrusiveness level (i.e., the extent to which each service intrudes the user¿s mind) by using the appropriate media objects for each user¿s situation.This work has been developed with the support of MICINN, under the project EVERYWARE TIN2010-18011, and the support of the Christian Doppler Forschungsgesellschaft and the BMWFJ, Austria.Serral Asensio, E.; Gil Pascual, M.; Valderas Aranda, PJ.; Pelechano Ferragud, V. (2014). Automating unobtrusive personalized services in ambient media environments. Multimedia Tools and Applications. 71(1):159-178. https://doi.org/10.1007/s11042-013-1634-2S159178711Bencomo N, Grace P, Flores-Cortés CA, Hughes D, Blair GS (2008) Genie: supporting the model driven development of reflective, component-based adaptive systems. In: ICSE, pp 811–814Blumendorf M, Lehmann G, Albayrak S (2010) Bridging models and systems at runtime to build adaptive user interfaces. In: Proc. of EICS 2010. ACM, pp 9–18Brown DM (2010) Communicating design: developing web site documentation for design and planning, 2nd edn. New Riders PressCalinescu R (2011) When the requirements for adaptation and high integrity meet. In: Proceedings of the 8th workshop on assurances for self-adaptive systems, ASAS ’11. ACM, New York, pp 1–4Filieri A, Ghezzi C, Tamburrelli G (2011) Run-time efficient probabilistic model checking. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11. ACM, New York, pp 341–350Gershenfeld N, Krikorian R, Cohen D (2004) The internet of things. Sci Am 291(4):46–51Gibbs WW (2005) Considerate computing. Sci Am 292(1):54–61Gulliksen J, Goransson B, Boivie I, Blomkvist S, Persson J, Cajander A (2003) Key principles for user-centred systems design. Behav Inform Technol 22:397–409Hinckley K, Horvitz E (2001) Toward more sensitive mobile phones. In: Proc. of the UIST ’01, pp 191–192Ho J, Intille SS (2005) Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In: Proc. of CHI ’05. ACM, pp 909–918Horvitz E, Kadie C, Paek T, Hovel D (2003) Models of attention in computing and communication: from principles to applications. Commun ACM 46:52–59Ju W, Leifer L (2008) The design of implicit interactions: making interactive systems less obnoxious. Des Issues 24(3):72–84Kortuem G, Kawsar F, Fitton D, Sundramoorthy V (2010) Smart objects as building blocks for the internet of things. IEEE Internet Comput 14(1):44–51Lewis JR (1995) Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78Lugmayr A, Risse T, Stockleben B, Laurila K, Kaario J (2009) Semantic ambient media—an introduction. Multimed Tools Appl 43(3):337–359Mattern F (2003) From smart devices to smart everyday objects. In: Proc. Smart Objects Conf. (SOC 03). Springer, pp 15–16Morin B, Barais O, Jezequel JM, Fleurey F, Solberg A (2009) Models run.time to support dynamic adaptation. Comput 42(10):44–51Nelson L, Churchill EF (2005) User experience of physical-digital object systems: implications for representation and infrastructure. Paper presented at smart object systems workshop, in cojunction with ubicomp 2005Paternò F (2002) Concurtasktrees: an engineered approach to model-based design of interactive systems. In: L.E. Associates (ed) The handbook of analysis for human-computer interaction, pp 483–500Paternò F (2003) From model-based to natural development. HCI International, pp 592–596Ramchurn SD, Deitch B, Thompson MK, Roure DCD, Jennings NR, Luck M (2004) Minimising intrusiveness in pervasive computing environments using multi-agent negotiation. MobiQuitous ’04, pp 364–372Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164Schmidt A (2000) Implicit human computer interaction through context. Pers Technol 4(2–3):191–199Serral E, Valderas P, Pelechano V (2010) Supporting runtime system evolution to adapt to user behaviour. In: Proc. of CAiSE’10, pp 378–392Serral E, Valderas P, Pelechano V (2010) Towards the model driven development of context-aware pervasive systems. PMC 6(2):254–280Siegemund F (2004) A context-aware communication platform for smart objects. In: Proc of the int conf on pervasive computing. Springer, pp 69–86Streitz NA, Rocker C, Prante T, Alphen Dv, Stenzel R, Magerkurth C (2005) Designing smart artifacts for smart environments. Comput 38(3):41–49. doi: 10.1109/MC.2005.92Thiesse F, Kohler M (2008) An analysis of usage-based pricing policies for smart products. Electron Mark 18(3):232–241. doi: 10.1080/10196780802265751Vastenburg MH, Keyson DV, de Ridder H (2008) Considerate home notification systems: a field study of acceptability of notifications in the home. Pers Ubiquit Comput 12(8):555–56
A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam
A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors
located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This
new SBN Program will deliver a rich and compelling physics opportunity,
including the ability to resolve a class of experimental anomalies in neutrino
physics and to perform the most sensitive search to date for sterile neutrinos
at the eV mass-scale through both appearance and disappearance oscillation
channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND
and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we
estimate that a search for muon neutrino to electron neutrino appearance can be
performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter
region. In this proposal for the SBN Program, we describe the physics analysis,
the conceptual design of the LAr1-ND detector, the design and refurbishment of
the T600 detector, the necessary infrastructure required to execute the
program, and a possible reconfiguration of the BNB target and horn system to
improve its performance for oscillation searches.Comment: 209 pages, 129 figure
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
'The Germans are Hydrophobes': Germany and the Germans in the Shaping of French Identity
This article addresses issues of national identity and nationalism in the age of the French Revolution by looking at French attitudes towards the Germans. It engages with theories of nationalism while presenting empirical evidence gleaned from archival research. This material, sometimes grimly, sometimes rather amusingly, reveals much about French ideas and prejudices about the Germans and how it reflected back on the revolutionary and Napoleonic sense of what it meant to be French
- …