1,977 research outputs found

    Pressure dependence of the oxygen isotope effect in YBa2_2Cu4_4O8_8

    Full text link
    We have carried out measurements of the pressure dependence to 1.2 GPa of the oxygen isotope effect on TcT_c in the high-TcT_c superconductor YBa2_2Cu4_4O8_8 using a clamp cell in a SQUID magnetometer. This compound lies close to, but just above, the 1/8th^{th} doping point where in La2−x_{2-x}Srx_xCuO4_4 marked anomalies in isotope effects occur. Both isotopes show the same very large pressure dependence of TcT_c with the result that the isotope exponent remains low (∼\sim0.08) but increases slightly with increasing pressure. This is discussed in terms of stripe suppression, a competing pseudogap and the effect of superconducting fluctuations.Comment: 4 pages, 1 figures, submitted to Phys. Rev.

    Thermodynamic properties of Bi2Sr2CaCu2O8 calculated from the electronic dispersion

    Full text link
    The electronic dispersion for Bi2Sr2CaCu2O(8+d) has been determined from angle-resolved photoelectron spectroscopy (ARPES). From this dispersion we calculate the entropy and superfluid density. Even with no adjustable parameters we obtain an exceptional match with experimental data across the entire phase diagram, thus indirectly confirming both the ARPES and thermodynamic data. The van Hove singularity is crossed in the overdoped region giving a distinctive linear-in-T temperature dependence in the superfluid density there.Comment: 5 pages, 4 figures, submitted to Physical Review Letter

    Two-component electron fluid in underdoped high-TcT_c cuprate superconductors

    Full text link
    Evidence from NMR of a two-component spin system in cuprate high-TcT_c superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-component scenario is restricted to the optimal and underdoped regimes and arises from the upper and lower branches of the reconstructed energy-momentum dispersion proposed by Yang, Rice and Zhang (YRZ) to describe the pseudogap. We calculate the spin susceptibility within the YRZ formalism and show that the doping and temperature dependence reproduces the experimental data for the cuprates.Comment: 5 pages, 2 figures, accepted for publication in European Physics Letter

    Saddle-point van Hove singularity and the phase diagram of high-Tc cuprates

    Full text link
    We examine the generic phase behavior of high-Tc cuprate superconductors in terms a universal van Hove singularity in the strongly overdoped region. Using a rigid ARPES-derived dispersion we solve the BCS gap equation and show that the pairing interaction or pairing energy cutoff must be a rapidly declining function of doping. This result is prejudicial to a phonon-based pairing interaction and more consistent with a magnetic or magnetically enhanced interaction.Comment: 5 pages, 2 figures, submitted to Physical Review

    Electron pockets and pseudogap asymmetry observed in the thermopower of underdoped cuprates

    Full text link
    We calculate the diffusion thermoelectric power of high-Tc cuprates using the resonating-valence-bond spin-liquid model developed by Yang, Rice and Zhang (YRZ). In this model, reconstruction of the energy-momentum dispersion results in a pseudogap in the density of states that is heavily asymmetric about the Fermi level. The subsequent asymmetry in the spectral conductivity is found to account for the large magnitude and temperature dependence of the thermopower observed in underdoped cuprates. In addition we find evidence in experimental data for electron pockets in the Fermi surface, arising from a YRZ-like reconstruction, near the onset of the pseudogap in the slightly overdoped regime.Comment: 6 pages, 7 figures, accepted for publication in EP
    • …
    corecore