21,968 research outputs found
Stem-root flow effect on soil–atmosphere interactions and uncertainty assessments
Abstract. Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem–root flow mechanism. This study develops the stem–root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land–atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem–root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem–root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem–root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem–root flow and soil moisture diffusion processes
ASCA Observations of the Seyfert 2 Galaxy NGC 7582: An Obscured and Scattered View of the Hidden Nucleus
ASCA observations of the Seyfert 2 galaxy NGC 7582 revealed it was highly
variable on the timescale of s in the hard X-ray (2-10 keV)
band, while the soft X-ray (0.5-2 keV) flux remained constant during the
observations.
The spectral analysis suggests that this object is seen through an obscuring
torus with the thickness of N. The
hard X-ray is an absorbed direct continuum from a hidden Seyfert 1 nucleus; the
soft X-ray is dominated by the scattered central continuum from an extended
spatial region. Thus we have an obscured/absorbed and a scattered view of this
source as expected from the unification model for Seyfert galaxies.
More interestingly, the inferred X-ray column was observed to increase by
from 1994 to 1996, suggesting a ``patchy''
torus structure, namely the torus might be composed of many individual clouds.
The observed iron line feature near 6.4 keV with the equivalent width of 170 eV
is also consistent with the picture of the transmission of nuclear X-ray
continuum through a non-uniform torus.Comment: 10 pages, 6 figures. To be appear in PASJ 50 No.5 (1998 Oct.25 issue
Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces
We present an atomistic self-consistent tight-binding study of the electronic
and transport properties of metal-semiconducting carbon nanotube interfaces as
a function of the nanotube channel length when the end of the nanotube wire is
buried inside the electrodes. We show that the lineup of the nanotube band
structure relative to the metal Fermi-level depends strongly on the metal work
function but weakly on the details of the interface. We analyze the
length-dependent transport characteristics, which predicts a transition from
tunneling to thermally-activated transport with increasing nanotube channel
length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available
in PRB online versio
Long wavelength local density of states oscillations near graphene step edges
Using scanning tunneling microscopy and spectroscopy, we have studied the
local density of states (LDOS) of graphene over step edges in boron nitride.
Long wavelength oscillations in the LDOS are observed with maxima parallel to
the step edge. Their wavelength and amplitude are controlled by the energy of
the quasiparticles allowing a direct probe of the graphene dispersion relation.
We also observe a faster decay of the LDOS oscillations away from the step edge
than in conventional metals. This is due to the chiral nature of the Dirac
fermions in graphene.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let
Bounded Model Checking of State-Space Digital Systems: The Impact of Finite Word-Length Effects on the Implementation of Fixed-Point Digital Controllers Based on State-Space Modeling
The extensive use of digital controllers demands a growing effort to prevent
design errors that appear due to finite-word length (FWL) effects. However,
there is still a gap, regarding verification tools and methodologies to check
implementation aspects of control systems. Thus, the present paper describes an
approach, which employs bounded model checking (BMC) techniques, to verify
fixed-point digital controllers represented by state-space equations. The
experimental results demonstrate the sensitivity of such systems to FWL effects
and the effectiveness of the proposed approach to detect them. To the best of
my knowledge, this is the first contribution tackling formal verification
through BMC of fixed-point state-space digital controllers.Comment: International Symposium on the Foundations of Software Engineering
201
Supersingular abelian surfaces and Eichler class number formula
In [Ann. Sci. École Norm. Sup. (4), 1969], Waterhouse classified simple abelian varieties over a prime field Fp in terms of lattices, except for the isogeny class that corresponds to the conjugacy class of Weil numbers ±p–√. He gave a description only for those with maximal endomorphism rings in this isogeny class, and suggested to apply Eichler’s trace formula to compute the number of them. The main result of this paper gives an explicit formula for the number of isomorphism classes in this isogeny class, generalizing the classical formula for supersingular elliptic curves by Eichler and Deuring. To achieve this, we give a self-contained treatment of Eichler’s trace formula for an arbitrary Z-order in any totally definite quaternion algebra
The female heart: sex differences in the dynamics of ECG in response to stress
Sex differences in the study of the human physiological response to mental stress are often erroneously ignored. To this end, we set out to show that our understanding of the stress response is fundamentally altered once sex differences are taken into account. This is achieved by comparing the heart rate variability (HRV) signals acquired during mental maths tests from ten females and ten males of similar maths ability; all females were in the follicular phase of their menstrual cycle. For rigor, the HRV signals from this pilot study were analyzed using temporal, spectral and nonlinear signal processing techniques, which all revealed significant statistical differences between the sexes, with the stress-induced increases in the heart rates from the males being significantly larger than those from the females (p-value = 4.4 × 10−4). In addition, mental stress produced an overall increase in the power of the low frequency component of HRV in the males, but caused an overall decrease in the females. The stress-induced changes in the power of the high frequency component were even more profound; it greatly decreased in the males, but increased in the females. We also show that mental stress was followed by the expected decrease in sample entropy, a nonlinear measure of signal regularity, computed from the males' HRV signals, while overall, stress manifested in an increase in the sample entropy computed from the females' HRV signals. This finding is significant, since mental stress is commonly understood to be manifested in the decreased entropy of HRV signals. The significant difference (p-value = 2.1 × 10−9) between the changes in the entropies from the males and females highlights the pitfalls in ignoring sex in the formation of a physiological hypothesis. Furthermore, it has been argued that estrogen attenuates the effect of catecholamine stress hormones; the findings from this investigation suggest for the first time that the conventionally cited cardiac changes, attributed to the fight-or-flight stress response, are not universally applicable to females. Instead, this pilot study provides an alternative interpretation of cardiac responses to stress in females, which indicates a closer alignment to the evolutionary tend-and-befriend response
Microscopic theory of single-electron tunneling through molecular-assembled metallic nanoparticles
We present a microscopic theory of single-electron tunneling through metallic
nanoparticles connected to the electrodes through molecular bridges. It
combines the theory of electron transport through molecular junctions with the
description of the charging dynamics on the nanoparticles. We apply the theory
to study single-electron tunneling through a gold nanoparticle connected to the
gold electrodes through two representative benzene-based molecules. We
calculate the background charge on the nanoparticle induced by the charge
transfer between the nanoparticle and linker molecules, the capacitance and
resistance of molecular junction using a first-principles based Non-Equilibrium
Green's Function theory. We demonstrate the variety of transport
characteristics that can be achieved through ``engineering'' of the
metal-molecule interaction.Comment: To appear in Phys. Rev.
- …