17 research outputs found
Electron Spin Decoherence in Bulk and Quantum Well Zincblende Semiconductors
A theory for longitudinal (T1) and transverse (T2) electron spin coherence
times in zincblende semiconductor quantum wells is developed based on a
non-perturbative nanostructure model solved in a fourteen-band restricted basis
set. Distinctly different dependences of coherence times on mobility,
quantization energy, and temperature are found from previous calculations.
Quantitative agreement between our calculations and measurements is found for
GaAs/AlGaAs, InGaAs/InP, and GaSb/AlSb quantum wells.Comment: 11 pages, 3 figure
Spin relaxation in (110) and (001) InAs/GaSb superlattices
We report an enhancement of the electron spin relaxation time (T1) in a (110)
InAs/GaSb superlattice by more than an order of magnitude (25 times) relative
to the corresponding (001) structure. The spin dynamics were measured using
polarization sensitive pump probe techniques and a mid-infrared, subpicosecond
PPLN OPO. Longer T1 times in (110) superlattices are attributed to the
suppression of the native interface asymmetry and bulk inversion asymmetry
contributions to the precessional D'yakonov Perel spin relaxation process.
Calculations using a nonperturbative 14-band nanostructure model give good
agreement with experiment and indicate that possible structural inversion
asymmetry contributions to T1 associated with compositional mixing at the
superlattice interfaces may limit the observed spin lifetime in (110)
superlattices. Our findings have implications for potential spintronics
applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure
Spintronics: Fundamentals and applications
Spintronics, or spin electronics, involves the study of active control and
manipulation of spin degrees of freedom in solid-state systems. This article
reviews the current status of this subject, including both recent advances and
well-established results. The primary focus is on the basic physical principles
underlying the generation of carrier spin polarization, spin dynamics, and
spin-polarized transport in semiconductors and metals. Spin transport differs
from charge transport in that spin is a nonconserved quantity in solids due to
spin-orbit and hyperfine coupling. The authors discuss in detail spin
decoherence mechanisms in metals and semiconductors. Various theories of spin
injection and spin-polarized transport are applied to hybrid structures
relevant to spin-based devices and fundamental studies of materials properties.
Experimental work is reviewed with the emphasis on projected applications, in
which external electric and magnetic fields and illumination by light will be
used to control spin and charge dynamics to create new functionalities not
feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes
from the published versio