1,908 research outputs found
On the Role of Metastable States in Low Pressure Oxygen Discharges
We use the one-dimensional object-oriented particle-in-cell Monte Carlo
collision code {\tt oopd1} to explore the spatio-temporal evolution of the
electron heating mechanism in a capacitively coupled oxygen discharge in the
pressure range 10 -- 200 mTorr. The electron heating is most significant in the
sheath vicinity during the sheath expansion phase. We explore how including and
excluding detachment by the singlet metastable states O(a) and O(b) influences the heating mechanism, the
effective electron temperature and electronegativity, in the oxygen discharge.
We demonstrate that the detachment processes have a significant influence on
the discharge properties, in particular for the higher pressures. At 10 mTorr
the time averaged electron heating shows mainly ohmic heating in the plasma
bulk (the electronegative core) and at higher pressures there is no ohmic
heating in the plasma bulk, that is electron heating in the sheath regions
dominates.Comment: submitted to AIP Conference Proceeding
Far-Infrared Excitations below the Kohn Mode: Internal Motion in a Quantum Dot
We have investigated the far-infrared response of quantum dots in modulation
doped GaAs heterostructures. We observe novel modes at frequencies below the
center-of-mass Kohn mode. Comparison with Hartree-RPA calculations show that
these modes arise from the flattened potential in our field-effect confined
quantum dots. They reflect pronounced relative motion of the charge density
with respect to the center-of-mass.Comment: 8 pages, LaTeX with integrated 6 PostScript figure
Spin effects in a confined 2DEG: Enhancement of the g-factor, spin-inversion states and their far-infrared absorption
We investigate several spin-related phenomena in a confined two-dimensional
electron gas (2DEG) using the Hartree-Fock approximation for the mutual Coulomb
interaction of the electrons. The exchange term of the interaction causes a
large splitting of the spin levels whenever the chemical potential lies within
a Landau band (LB). This splitting can be reinterpreted as an enhancement of an
effective g-factor, g*. The increase of g* when a LB is half filled can be
accompanied by a spontaneous formation of a static spin-inversion state (SIS)
whose details depend on the system sision state (SIS) whose details depend on
the system size. The coupling of the states of higher LB's into the lowest band
by the Coulomb interaction of the 2DEG is essential for the SIS to occur. The
far-infrared absorption of the system, relatively insensitive to the spin
splitting, develops clear signs of the SIS.Comment: 7 figure
Memorization of short-range potential fluctuations in Landau levels
We calculate energy spectra of a two-dimensional electron system in a
perpendicular magnetic field and periodic potentials of short periods. The
Coulomb interaction is included within a screened Hartree-Fock approximation.
The electrostatic screening is poor and the exchange interaction amplifies the
energy dispersion. We obtain, by numerical iterations, self-consistent
solutions that have a hysteresis-like property. With increasing amplitude of
the external potential the energy dispersion and the electron density become
periodic, and they remain stable when the external potential is reduced to
zero. We explain this property in physical terms and speculate that a real
system could memorize short-range potential fluctuations after the potential
has been turned off.Comment: 11 pages with 4 included figures, Revte
Magnetization in short-period mesoscopic electron systems
We calculate the magnetization of the two-dimensional electron gas in a
short-period lateral superlattice, with the Coulomb interaction included in
Hartree and Hartree-Fock approximations. We compare the results for a finite,
mesoscopic system modulated by a periodic potential, with the results for the
infinite periodic system. In addition to the expected strong exchange effects,
the size of the system, the type and the strength of the lateral modulation
leave their fingerprints on the magnetization.Comment: RevTeX4, 10 pages with 14 included postscript figures To be published
in PRB. Replaced to repair figure
Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields
We calculate the ground-state of a two-dimensional electron gas in a
short-period lateral potential in magnetic field, with the Coulomb
electron-electron interaction included in the Hartree-Fock approximation. For a
sufficiently short period the dominant Coulomb effects are determined by the
exchange interaction. We find numerical solutions of the self-consistent
equations that have hysteresis properties when the magnetic field is tilted and
increased, such that the perpendicular component is always constant. This
behavior is a result of the interplay of the exchange interaction with the
energy dispersion and the spin splitting. We suggest that hysteresis effects of
this type could be observable in magneto-transport and magnetization
experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.
Manifestation of the Hofstadter butterfly in far-infrared absorption
The far-infrared absorption of a two-dimensional electron gas with a
square-lattice modulation in a perpendicular constant magnetic field is
calculated self-consistently within the Hartree approximation. For strong
modulation and short period we obtain intra- and intersubband magnetoplasmon
modes reflecting the subbands of the Hofstadter butterfly in two or more Landau
bands. The character of the absorption and the correlation of the peaks to the
number of flux quanta through each unit cell of the periodic potential depends
strongly on the location of the chemical potential with respect to the
subbands, or what is the same, on the density of electrons in the system.Comment: RevTeX file + 4 postscript figures, to be published Phys. Rev. B
Rapid Com
Magnetization of noncircular quantum dots
We calculate the magnetization of quantum dots deviating from circular
symmetry for noninteracting electrons or electrons interacting according to the
Hartree approximation. For few electrons the magnetization is found to depend
on their number, and the shape of the dot. The magnetization is an ideal probe
into the many-electron state of a quantum dot.Comment: 11 RevTeX pages with 6 included Postscript figure
QMM. A Quarterly Macroeconomic Model of the Icelandic Economy
This paper documents and describes Version 2.0 of the Quarterly Macroeconomic Model of the Central Bank of Iceland (QMM). QMM and the underlying quarterly database have been under construction since 2001 at the Research and Forecasting Division of the Economics Department at the Bank and was first implemented in the forecasting round for the Monetary Bulletin 2006.1 in March 2006. QMM is used by the Bank for forecasting and various policy simulations and therefore plays a key role as an organisational framework for viewing the medium-term future when formulating monetary policy at the Bank. This paper is mainly focused on the short and medium-term properties of QMM. Steady state properties of the model are documented in a paper by Daníelsson (2009).
- …