1,415 research outputs found

    Non-Markovian quantum jumps

    Get PDF
    Open quantum systems that interact with structured reservoirs exhibit non-Markovian dynamics. We present a quantum jump method for treating the dynamics of such systems. This approach is a generalization of the standard Monte Carlo Wave Function (MCWF) method for Markovian dynamics. The MCWF method identifies decay rates with jump probabilities and fails for non-Markovian systems where the time-dependent rates become temporarily negative. Our non-Markovian quantum jump (NMQJ) approach circumvents this problem and provides an efficient unravelling of the ensemble dynamics.Comment: 4 pages, 2 figures.V2: rewritten abstract and introduction, title modified. V3: published version, new example case with photonic band ga

    Radiative collisional heating at the Doppler limit for laser-cooled magnesium atoms

    Full text link
    We report Monte Carlo wave function simulation results on cold collisions between magnesium atoms in a strong red-detuned laser field. This is the normal situation e.g. in magneto-optical traps (MOT). The Doppler limit heating rate due to radiative collisions is calculated for Mg-24 atoms in a magneto-optical trap based on the singlet S_0 - singlet P_1 atomic laser cooling transition. We find that radiative heating does not seem to affect the Doppler limit in this case. We also describe a channelling mechanism due to the missing Q branch in the excitation scheme, which could lead to a suppression of inelastic collisions, and find that this mechanism is not present in our simulation results due to the multistate character of the excitation process.Comment: 4 pages, RevTeX 4; v2 contains minor revisions based on referee comments (5 pages

    Mean-Field Theory of Feshbach-Resonant Interactions in 85Rb Condensates

    Full text link
    Recent Feshbach-resonance experiments with 85Rb Bose-Einstein condensates have led to a host of unexplained results: dramatic losses of condensate atoms for an across-resonance sweep of the magnetic field, a collapsing condensate with a burst of atoms emanating from the remnant condensate, increased losses for decreasing interaction times-- until short times are reached, and seemingly coherent oscillations between remnant and burst atoms. Using a simple yet realistic mean-field model, we find that rogue dissociation, molecular dissociation to noncondensate atom pairs, is strongly implicated as the physical mechanism responsible for these observations.Comment: v2: numbers changed, not conclusions; 5 pages, 3 figures, submitted to PR

    Center of mass rotation and vortices in an attractive Bose gas

    Full text link
    The rotational properties of an attractively interacting Bose gas are studied using analytical and numerical methods. We study perturbatively the ground state phase space for weak interactions, and find that in an anharmonic trap the rotational ground states are vortex or center of mass rotational states; the crossover line separating these two phases is calculated. We further show that the Gross-Pitaevskii equation is a valid description of such a gas in the rotating frame and calculate numerically the phase space structure using this equation. It is found that the transition between vortex and center of mass rotation is gradual; furthermore the perturbative approach is valid only in an exceedingly small portion of phase space. We also present an intuitive picture of the physics involved in terms of correlated successive measurements for the center of mass state.Comment: version2, 17 pages, 5 figures (3 eps and 2 jpg

    Atomic dynamics in evaporative cooling of trapped alkali atoms in strong magnetic fields

    Get PDF
    We investigate how the nonlinearity of the Zeeman shift for strong magnetic fields affects the dynamics of rf field induced evaporative cooling in magnetic traps. We demonstrate for the 87-Rb and 23-Na F=2 trapping states with wave packet simulations how the cooling stops when the rf field frequency goes below a certain limit (for the 85-Rb F=2 trapping state the problem does not appear). We examine the applicability of semiclassical models for the strong field case as an extension of our previous work [Phys. Rev. A 58, 3983 (1998)]. Our results verify many of the aspects observed in a recent 87^{87}Rb experiment [Phys. Rev. A 60, R1759 (1999)].Comment: 9 pages, RevTex, eps figures embedde

    Cold collisions between atoms in optical lattices

    Full text link
    We have simulated binary collisions between atoms in optical lattices during Sisyphus cooling. Our Monte Carlo Wave Function simulations show that the collisions selectively accelerate mainly the hotter atoms in the thermal ensemble, and thus affect the steady state which one would normally expect to reach in Sisyphus cooling without collisions.Comment: 4 pages, 1 figur

    Superconducting, Insulating, and Anomalous Metallic Regimes in a Gated Two-Dimensional Semiconductor-Superconductor Array

    Full text link
    The superconductor-insulator transition in two dimensions has been widely investigated as a paradigmatic quantum phase transition. The topic remains controversial, however, because many experiments exhibit a metallic regime with saturating low-temperature resistance, at odds with conventional theory. Here, we explore this transition in a novel, highly controllable system, a semiconductor heterostructure with epitaxial Al, patterned to form a regular array of superconducting islands connected by a gateable quantum well. Spanning nine orders of magnitude in resistance, the system exhibits regimes of superconducting, metallic, and insulating behavior, along with signatures of flux commensurability and vortex penetration. An in-plane magnetic field eliminates the metallic regime, restoring the direct superconductor-insulator transition, and improves scaling, while strongly altering the scaling exponent
    corecore