924 research outputs found

    Stress dependent thermal pressurization of a fluid-saturated rock

    Get PDF
    Temperature increase in saturated porous materials under undrained conditions leads to thermal pressurization of the pore fluid due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the solid matrix. This increase in the pore fluid pressure induces a reduction of the effective mean stress and can lead to shear failure or hydraulic fracturing. The equations governing the phenomenon of thermal pressurization are presented and this phenomenon is studied experimentally for a saturated granular rock in an undrained heating test under constant isotropic stress. Careful analysis of the effect of mechanical and thermal deformation of the drainage and pressure measurement system is performed and a correction of the measured pore pressure is introduced. The test results are modelled using a non-linear thermo-poro-elastic constitutive model of the granular rock with emphasis on the stress-dependent character of the rock compressibility. The effects of stress and temperature on thermal pressurization observed in the tests are correctly reproduced by the model

    Fourier mode dynamics for the nonlinear Schroedinger equation in one-dimensional bounded domains

    Full text link
    We analyze the 1D focusing nonlinear Schr\"{o}dinger equation in a finite interval with homogeneous Dirichlet or Neumann boundary conditions. There are two main dynamics, the collapse which is very fast and a slow cascade of Fourier modes. For the cubic nonlinearity the calculations show no long term energy exchange between Fourier modes as opposed to higher nonlinearities. This slow dynamics is explained by fairly simple amplitude equations for the resonant Fourier modes. Their solutions are well behaved so filtering high frequencies prevents collapse. Finally these equations elucidate the unique role of the zero mode for the Neumann boundary conditions

    Scaling Properties of Weak Chaos in Nonlinear Disordered Lattices

    Full text link
    The Discrete Nonlinear Schroedinger Equation with a random potential in one dimension is studied as a dynamical system. It is characterized by the length, the strength of the random potential and by the field density that determines the effect of nonlinearity. The probability of the system to be regular is established numerically and found to be a scaling function. This property is used to calculate the asymptotic properties of the system in regimes beyond our computational power.Comment: 4 pages, 5 figure

    Dissipative solitons which cannot be trapped

    Get PDF
    In this paper we study the behavior of dissipative solitons in systems with high order nonlinear dissipation and show how they cannot survive under the effect of trapping potentials both of rigid wall type or asymptotically increasing ones. This provides an striking example of a soliton which cannot be trapped and only survives to the action of a weak potential

    Finite time collapse of N classical fields described by coupled nonlinear Schrodinger equations

    Full text link
    We prove the finite-time collapse of a system of N classical fields, which are described by N coupled nonlinear Schrodinger equations. We derive the conditions under which all of the fields experiences this finite-time collapse. Finally, for two-dimensional systems, we derive constraints on the number of particles associated with each field that are necessary to prevent collapse.Comment: v2: corrected typo on equation

    Symmetry Breaking in Symmetric and Asymmetric Double-Well Potentials

    Get PDF
    Motivated by recent experimental studies of matter-waves and optical beams in double well potentials, we study the solutions of the nonlinear Schr\"{o}dinger equation in such a context. Using a Galerkin-type approach, we obtain a detailed handle on the nonlinear solution branches of the problem, starting from the corresponding linear ones and predict the relevant bifurcations of solutions for both attractive and repulsive nonlinearities. The results illustrate the nontrivial differences that arise between the steady states/bifurcations emerging in symmetric and asymmetric double wells
    • 

    corecore