96,356 research outputs found

    KN and KbarN Elastic Scattering in the Quark Potential Model

    Full text link
    The KN and KbarN low-energy elastic scattering is consistently studied in the framework of the QCD-inspired quark potential model. The model is composed of the t-channel one-gluon exchange potential, the s-channel one-gluon exchange potential and the harmonic oscillator confinement potential. By means of the resonating group method, nonlocal effective interaction potentials for the KN and KbarN systems are derived and used to calculate the KN and KbarN elastic scattering phase shifts. By considering the effect of QCD renormalization, the contribution of the color octet of the clusters (qqbar) and (qqq) and the suppression of the spin-orbital coupling, the numerical results are in fairly good agreement with the experimental data.Comment: 20 pages, 8 figure

    Beauty and the Beastly Prime Minister

    Get PDF
    This essay examines the so-called “turn to beauty” in British fiction since the 1990s as a response to the political and social consequences of Thatcherism. Focusing primarily on four texts—Jonathan Coe’s What a Carve Up! (1994), Julian Barnes’s England, England, (1998), Alan Hollinghurst’s The Line of Beauty (2004), and Zadie Smith’s On Beauty (2005)—this essay argues that conceptions of beauty and beastliness delineate possible boundaries to the neoliberalism with which Thatcherism is associated. Two distinct phases of the beauty/beastliness rhetoric are identified: an ironized utopianism in the 1990s; an ambivalent embrace of global humanism in the 2000s

    Refiguring National Character: The Remains of the British Estate Novel

    Get PDF

    Closed expression of the interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states

    Full text link
    The interaction kernel in the Bethe-Salpeter equation for quark-antiquark bound states is derived from the Bethe-Salpeter equations satisfied by the quark-antiquark four-point Green's function. The latter equations are established based on the equations of motion obeyed by the quark and antiquark propagators, the four-point Green's function and some other kinds of Green's functions which follow directly from the QCD generating functional. The B-S kernel derived is given an exact and explicit expression which contains only a few types of Green's functions. This expression is not only convenient for perturbative calculations, but also suitable for nonperturbative investigations.Comment: 27 pages,no figure

    Mechanisms of Auger-induced chemistry derived from wave packet dynamics

    Get PDF
    To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C_(197)H_(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics

    Renormalization of the Sigma-Omega model within the framework of U(1) gauge symmetry

    Full text link
    It is shown that the Sigma-Omega model which is widely used in the study of nuclear relativistic many-body problem can exactly be treated as an Abelian massive gauge field theory. The quantization of this theory can perfectly be performed by means of the general methods described in the quantum gauge field theory. Especially, the local U(1) gauge symmetry of the theory leads to a series of Ward-Takahashi identities satisfied by Green's functions and proper vertices. These identities form an uniquely correct basis for the renormalization of the theory. The renormalization is carried out in the mass-dependent momentum space subtraction scheme and by the renormalization group approach. With the aid of the renormalization boundary conditions, the solutions to the renormalization group equations are given in definite expressions without any ambiguity and renormalized S-matrix elememts are exactly formulated in forms as given in a series of tree diagrams provided that the physical parameters are replaced by the running ones. As an illustration of the renormalization procedure, the one-loop renormalization is concretely carried out and the results are given in rigorous forms which are suitable in the whole energy region. The effect of the one-loop renormalization is examined by the two-nucleon elastic scattering.Comment: 32 pages, 17 figure

    Robust Inference Under Heteroskedasticity via the Hadamard Estimator

    Full text link
    Drawing statistical inferences from large datasets in a model-robust way is an important problem in statistics and data science. In this paper, we propose methods that are robust to large and unequal noise in different observational units (i.e., heteroskedasticity) for statistical inference in linear regression. We leverage the Hadamard estimator, which is unbiased for the variances of ordinary least-squares regression. This is in contrast to the popular White's sandwich estimator, which can be substantially biased in high dimensions. We propose to estimate the signal strength, noise level, signal-to-noise ratio, and mean squared error via the Hadamard estimator. We develop a new degrees of freedom adjustment that gives more accurate confidence intervals than variants of White's sandwich estimator. Moreover, we provide conditions ensuring the estimator is well-defined, by studying a new random matrix ensemble in which the entries of a random orthogonal projection matrix are squared. We also show approximate normality, using the second-order Poincare inequality. Our work provides improved statistical theory and methods for linear regression in high dimensions
    corecore