21 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Arabinoxylan/nanofibrillated cellulose composite films

    No full text
    There is an increasing interest in substituting petroleum based polymer films, for food packaging applications, with films based on renewable resources. In many of these applications, low oxygen permeability and low moisture uptake of films are required, as well as high enough strength and flexibility. For this purpose, rye arabinoxylan films reinforced with nanofibrillated cellulose was prepared and evaluated. A thorough mixing of the components resulted in uniform films. Mechanical, thermal, structural, moisture sorption and oxygen barrier characteristics of such films are reported here. Reinforcement of arabinoxylan with nanofibrillated cellulose affected the properties of the films positively. A decrease in moisture sorption of the films, as well as an increase in stiffness, strength and flexibility of the films were shown. From these results and dynamic FTIR spectra, a strong coupling between reinforcing cellulose and arabinoxylan matrix was concluded. Oxygen barrier properties were equal or better as compared to the neat rye arabinoxylan film. In general, the high nanofibrillated cellulose containing composite film, i.e. 75 % NFC, showed the best properties

    Bacterial Nanocellulose-Reinforced Arabinoxylan Films

    No full text
    There is an increasing interest in substituting today's films for food packaging applications with films based on renewable resources. For this purpose, rye arabinoxylans, unmodified and enzymatically debranched, were studied for the preparation of neat films and composite films reinforced with bacterial cellulose (BC). Mixing in a homogenizer produced optically transparent, uniform films. Physical and mechanical characteristics of such films are here reported. Debranching of the arabinoxylan caused an increase in its crystallinity of 20%. Debranching as well as reinforcement with BC resulted in a decrease of the moisture sorption of the films. The debranching also resulted in a reduced breaking strain while the reinforcement with BC increased stiffness and strength of the films
    corecore