47 research outputs found
PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice
DNA transposon piggyBac (PB) is a newly established mutagen for large-scale mutagenesis in mice. We have designed and implemented an integrated database system called PBmice (PB Mutagenesis Information CEnter) for storing, retrieving and displaying the information derived from PB insertions (INSERTs) in the mouse genome. This system is centered on INSERTs with information including their genomic locations and flanking genomic sequences, the expression levels of the hit genes, and the expression patterns of the trapped genes if a trapping vector was used. It also archives mouse phenotyping data linked to INSERTs, and allows users to conduct quick and advanced searches for genotypic and phenotypic information relevant to a particular or a set of INSERT(s). Sequence-based information can be cross-referenced with other genomic databases such as Ensembl, BLAST and GBrowse tools used in PBmice offer enhanced search and display for additional information relevant to INSERTs. The total number and genomic distribution of PB INSERTs, as well as the availability of each PB insertional LINE can also be viewed with user-friendly interfaces. PBmice is freely available at http://www.idmshanghai.cn/PBmice or http://www.scbit.org/PBmice/
Exposure to N-Ethyl-N-Nitrosourea in Adult Mice Alters Structural and Functional Integrity of Neurogenic Sites
BACKGROUND: Previous studies have shown that prenatal exposure to the mutagen N-ethyl-N-nitrosourea (ENU), a N-nitroso compound (NOC) found in the environment, disrupts developmental neurogenesis and alters memory formation. Previously, we showed that postnatal ENU treatment induced lasting deficits in proliferation of neural progenitors in the subventricular zone (SVZ), the main neurogenic region in the adult mouse brain. The present study is aimed to examine, in mice exposed to ENU, both the structural features of adult neurogenic sites, incorporating the dentate gyrus (DG), and the behavioral performance in tasks sensitive to manipulations of adult neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: 2-month old mice received 5 doses of ENU and were sacrificed 45 days after treatment. Then, an ultrastructural analysis of the SVZ and DG was performed to determine cellular composition in these regions, confirming a significant alteration. After bromodeoxyuridine injections, an S-phase exogenous marker, the immunohistochemical analysis revealed a deficit in proliferation and a decreased recruitment of newly generated cells in neurogenic areas of ENU-treated animals. Behavioral effects were also detected after ENU-exposure, observing impairment in odor discrimination task (habituation-dishabituation test) and a deficit in spatial memory (Barnes maze performance), two functions primarily related to the SVZ and the DG regions, respectively. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that postnatal exposure to ENU produces severe disruption of adult neurogenesis in the SVZ and DG, as well as strong behavioral impairments. These findings highlight the potential risk of environmental NOC-exposure for the development of neural and behavioral deficits
Traitement et prophylaxie de la Maladie ThromboEmbolique Veineuse (MTEV)
Ont contibué: Mazzolai L., Angellilo A., Bervini D, Borens O, Buclin T, Bulaz C., Burnier M, Calandra T, Cornuz J, Corpataux J,M., Daniel R., Desmartines N., Duchosal M., Eeckhout E., Farron A., Frackowiak R., Hirschi B., Hohlfeld P., Hugli O., Jichlinski P., Jolliet P., Kern C., Levivier M., Leyvraz S., Meuli R., Michel P., Moradpour D., Nicod L., Pannatier A., Prior J., Qanadli S., Ris H.B., Ruchat P., So A., Teta D., Vial Y., Vogt P., Voirol P., Von Segesser L., Waeber G., Yersin B
Aey2, a new mutation in the betaB2-crystallin-encoding gene of the mouse.
PURPOSE: During an ethylnitrosourea (ENU) mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was found that caused progressive opacity and was referred to as Aey2. The purpose of the study was to provide a morphologic description, to map the mutant gene, and to characterize the underlying molecular lesion. METHODS: Isolated lenses were photographed, and histologic sections of the eye were analyzed according to standard procedures. Linkage analysis was performed using a set of microsatellite markers covering all autosomal chromosomes. cDNA from candidate genes was amplified after reverse transcription of lens mRNA. RESULTS: The cortical opacification visible at eye opening progressed to an anterior suture cataract and reached its final phenotype as total opacity at 8 weeks of age. There was no obvious difference between heterozygous and homozygous mutants. The mutation was mapped to chromosome 5 proximal to the marker D5Mit138 (8.7 +/- 4.2 centimorgan [cM]) and distal to D5Mit15 (12.8 +/- 5.4 cM). No recombinations were observed to the markers D5Mit10 and D5Mit25. This position makes the genes within the betaA4/betaB-crystallin gene cluster excellent candidate genes. Sequence analysis revealed a mutation of T-->A at position 553 in the Crybb2 gene, leading to an exchange of Val for GLU: It affects the same region of the Crybb2 gene as in the Philly mouse. Correspondingly, the loss of the fourth Greek key motif is to be expected. CONCLUSIONS: The Aey2 mutant represents the second allele of Crybb2 in mice. Because an increasing number of beta- and gamma-crystallin mutations have been reported, a detailed phenotype-genotype correlation will allow a clearer functional understanding of beta- and gamma-crystallins
Aey2, a New Mutation in the ßB2-Crystallin-Encoding Gene of the Mouse.
PURPOSE: During an ethylnitrosourea (ENU) mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was found that caused progressive opacity and was referred to as Aey2. The purpose of the study was to provide a morphologic description, to map the mutant gene, and to characterize the underlying molecular lesion. METHODS: Isolated lenses were photographed, and histologic sections of the eye were analyzed according to standard procedures. Linkage analysis was performed using a set of microsatellite markers covering all autosomal chromosomes. cDNA from candidate genes was amplified after reverse transcription of lens mRNA. RESULTS: The cortical opacification visible at eye opening progressed to an anterior suture cataract and reached its final phenotype as total opacity at 8 weeks of age. There was no obvious difference between heterozygous and homozygous mutants. The mutation was mapped to chromosome 5 proximal to the marker D5Mit138 (8.7 +/- 4.2 centimorgan [cM]) and distal to D5Mit15 (12.8 +/- 5.4 cM). No recombinations were observed to the markers D5Mit10 and D5Mit25. This position makes the genes within the betaA4/betaB-crystallin gene cluster excellent candidate genes. Sequence analysis revealed a mutation of T-->A at position 553 in the Crybb2 gene, leading to an exchange of Val for GLU: It affects the same region of the Crybb2 gene as in the Philly mouse. Correspondingly, the loss of the fourth Greek key motif is to be expected. CONCLUSIONS: The Aey2 mutant represents the second allele of Crybb2 in mice. Because an increasing number of beta- and gamma-crystallin mutations have been reported, a detailed phenotype-genotype correlation will allow a clearer functional understanding of beta- and gamma-crystallins
Symptom development and latent period of Austropuccinia psidii (myrtle rust) in relation to host species, temperature, and ontogenic resistance
Abstract Myrtle rust (Austropuccinia psidii) is an invasive species causing damage to Myrtaceae species in natural and managed ecosystems in many countries. To better understand myrtle rust epidemiology we studied latent period (LP) and ontogenic resistance in relation to temperature on three susceptible hosts (Metrosideros excelsa, Lophomyrtus bullata Ă L. obcordata and Syzygium jambos). The latent period curve was U-shaped, with latent development >0 from between 8 and 10 °C, depending on the host, to 32 °C. Optimum range was 22â28 °C with minimum LP of 5â7 days. Peak spore production occurred over about 2 weeks, starting about 1 week after the LP ended. Some spore production continued for 1â2 months. Comparison of the LP data with field temperatures indicated that the uredinial stage of A. psidii can overwinter in the latent phase in temperate areas of New Zealand and southern Australia and, therefore, uredinial or telial reinfection is not required during winter. The LP information was used to correct the LP function in a New Zealand myrtle rust climatic risk model. The transition of emergent leaf and stem tissues in susceptible Myrtaceae genotypes from susceptible to immune (ontogenic resistance) was characterized in terms of uredinium density and LP. Onset of ontogenic resistance was closely linked to the degree of leaf expansion, with fully expanded leaves being immune to infection. Because ontogenic resistance restricts infection to periods when growth flushes occur, understanding it is crucial for explaining the seasonality of myrtle rust development in the natural environment
Characterization of a new, dominant V124E mutation in the mouse alphaA-crystallin-encoding gene.
PURPOSE: During an ethylnitrosourea (ENU) mutagenesis screening, mice were tested for the occurrence of dominant cataracts. The purpose of the study was morphologic description, mapping of the mutant gene, and characterization of the underlying molecular lesion in a particular mutant, Aey7. METHODS: Isolated lenses were photographed and histologic sections of the eye were analyzed according to standard procedures. Linkage analysis was performed with a set of microsatellite markers covering all autosomal chromosomes. cDNA was amplified after reverse transcription of lens mRNA. For PCR, cDNA or genomic DNA was used as a template. RESULTS: Nuclear opacity and posterior suture anomaly were visible at eye opening and progressed to a nuclear and zonular cataract at 2 months of age. The opacity as well as the microphthalmia was more pronounced in the homozygotes than in the heterozygotes. The mutation was mapped to chromosome 17 between the markers D17Mit133 and D17Mit180. This position made the alphaA-crystallin-encoding gene (Cryaa) an excellent candidate gene. Sequence analysis revealed a mutation of a T to an A at position 371 in the Cryaa cDNA. The mutation was confirmed by an additional MnlI restriction site in the genomic DNA of homozygous mutants leading to replacement of Val with Glu at codon 124 affecting the C-terminal region of the alphaA-crystallin. CONCLUSIONS: The Aey7 mutant represents the first dominant mouse cataract mutation affecting the Cryaa gene. The mutation leads to progressive opacification of the lens. Compared with the beta- and gamma-crystallin-encoding genes, mutations in the alpha-crystallin-encoding genes are rare
Characterization of a Mutation in the Lens-specific MP70 Encoding Gene of the Mouse Leading to a Dominant Cataract.
During an ethylnitrosourea mutagenesis screen, Aey5, a new mouse mutation exhibiting an autosomal dominant congenital cataract was isolated. The cataractous phenotype is visible at the eye opening and progresses to a nuclear and zonular cataract at 2 months of age with no difference in onset or severity between heterozygous and homozygous mutants. Histological analysis revealed that fiber cell differentiation continues at the lens bow region, but the cell nuclei do not degrade normally and remain in the deeper cortex. Further, the lens nucleus has clefts of various sizes while the remainder of the eye was morphologically normal. The mutation was mapped to chromosome 3 between the markers D3Mit101 andD3Mit77 near the connexin encoding genes Gja5 and Gja8. Sequence analysis revealed no differences in theGja5 gene, but identified a T→C mutation at position 191 in the Gja8 gene, which was confirmed by an additional Mva 12691 restriction site in the genomic DNA of homozygous mutants. This mutation results in Val→Ala substitution at codon 64 of connexin50 (Cx50) also known as lens membrane protein 70 (MP70). Aey5 represents the second dominant mouse cataract mutant affecting Cx50, a membrane protein preferentially expressed in the lens. Since both mutations affect similar regions in the first extracellular domain this region appears to be critically important for its function in lens transparency