14 research outputs found

    Invariants of Lie Algebras with Fixed Structure of Nilradicals

    Full text link
    An algebraic algorithm is developed for computation of invariants ('generalized Casimir operators') of general Lie algebras over the real or complex number field. Its main tools are the Cartan's method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. Unlike the first application of the algorithm in [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], which deals with low-dimensional Lie algebras, here the effectiveness of the algorithm is demonstrated by its application to computation of invariants of solvable Lie algebras of general dimension n<n<\infty restricted only by a required structure of the nilradical. Specifically, invariants are calculated here for families of real/complex solvable Lie algebras. These families contain, with only a few exceptions, all the solvable Lie algebras of specific dimensions, for whom the invariants are found in the literature.Comment: LaTeX2e, 19 page

    Invariants of Triangular Lie Algebras

    Full text link
    Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants ('generalized Casimir operators') are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], developed further in [J. Phys. A: Math. Theor., 2007, V.40, 113; math-ph/0606045], is used to determine the invariants. A conjecture of [J. Phys. A: Math. Gen., 2001, V.34, 9085], concerning the number of independent invariants and their form, is corroborated.Comment: LaTeX2e, 16 pages; misprints are corrected, some proofs are extende

    Classification of real three-dimensional Lie bialgebras and their Poisson-Lie groups

    Full text link
    Classical r-matrices of the three-dimensional real Lie bialgebras are obtained. In this way all three-dimensional real coboundary Lie bialgebras and their types (triangular, quasitriangular or factorizable) are classified. Then, by using the Sklyanin bracket, the Poisson structures on the related Poisson-Lie groups are obtained.Comment: 17 page

    Computation of Invariants of Lie Algebras by Means of Moving Frames

    Full text link
    A new purely algebraic algorithm is presented for computation of invariants (generalized Casimir operators) of Lie algebras. It uses the Cartan's method of moving frames and the knowledge of the group of inner automorphisms of each Lie algebra. The algorithm is applied, in particular, to computation of invariants of real low-dimensional Lie algebras. A number of examples are calculated to illustrate its effectiveness and to make a comparison with the same cases in the literature. Bases of invariants of the real solvable Lie algebras up to dimension five, the real six-dimensional nilpotent Lie algebras and the real six-dimensional solvable Lie algebras with four-dimensional nilradicals are newly calculated and listed in tables.Comment: 17 pages, extended versio

    The Drinfeld double gl(n) \oplus t_n

    Full text link
    The two isomorphic Borel subalgebras of gl(n), realized on upper and lower triangular matrices, allow us to consider the gl(n) \opus t_n algebra as a self-dual Drinfeld double. Compatibility conditions impose the choice of an orthonormal basis in the Cartan subalgebra and fix the basis of gl(n). A natural Lie bialgebra structure on gl(n) is obtained, that offers a new perspective for its standard quantum deformation.Comment: 8 page
    corecore