711 research outputs found

    On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes

    Get PDF
    This work deals with the meta-data analysis of high-resolution orbital imagery that was acquired over the last four decades of Mars. The objective of this analysis is to provide a starting point for planetary scientists who are interested in examining the martian surface in order to detect changes that are related to not fully understood natural phenomena. An image aggregation method is introduced and used to generate image groupings related to prioritising regions for change detection. The parameters determining each grouping are the season, the Martian Year and the local time that an image was acquired, the imaging instrument and its resolution. The analysis shows that there is sufficient coverage to systematically examine periodic martian phenomena in images that depict the same area over the same season, as well as sporadic martian phenomena (e.g. a new crater) in images that depict the same area in different time periods. The end product of this work is a series of 35 global coverage maps demonstrating the high-resolution repeat coverage of Mars up to Martian Year 31 under different temporal and viewing condition constraints. These are available both through supplementary material as well as via a web-GIS

    A Systematic Solution to Multi-Instrument Coregistration of High-Resolution Planetary Images to an Orthorectified Baseline

    Get PDF
    We address the problem of automatically coregistering planetary images to a common baseline, introducing a novel generic technique that achieves an unprecedented robustness to different image inputs, thus making batch-mode coregistration achievable without requiring the usual parameter tweaking. We introduce a novel image matching technique, which boosts matching performance even under the most strenuous circumstances, and experimentally demonstrate validation through an extensive experimental multi-instrument setup that includes images from eight high-resolution data sets of the Mars and the Moon. The technique is further tested in a batch-mode processing, in which approximately 1.6% of all high-resolution Martian imagery is coregistered to a common baseline

    SEnSeI: A Deep Learning Module for Creating Sensor Independent Cloud Masks

    Get PDF
    We introduce a novel neural network architecture -- Spectral ENcoder for SEnsor Independence (SEnSeI) -- by which several multispectral instruments, each with different combinations of spectral bands, can be used to train a generalised deep learning model. We focus on the problem of cloud masking, using several pre-existing datasets, and a new, freely available dataset for Sentinel-2. Our model is shown to achieve state-of-the-art performance on the satellites it was trained on (Sentinel-2 and Landsat 8), and is able to extrapolate to sensors it has not seen during training such as Landsat 7, Per\'uSat-1, and Sentinel-3 SLSTR. Model performance is shown to improve when multiple satellites are used in training, approaching or surpassing the performance of specialised, single-sensor models. This work is motivated by the fact that the remote sensing community has access to data taken with a hugely variety of sensors. This has inevitably led to labelling efforts being undertaken separately for different sensors, which limits the performance of deep learning models, given their need for huge training sets to perform optimally. Sensor independence can enable deep learning models to utilise multiple datasets for training simultaneously, boosting performance and making them much more widely applicable. This may lead to deep learning approaches being used more frequently for on-board applications and in ground segment data processing, which generally require models to be ready at launch or soon afterwards

    An optimised system for generating multi-resolution DTMS using NASA DTMS datasets

    Get PDF
    Abstract. Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs

    Generalized h-index for Disclosing Latent Facts in Citation Networks

    Full text link
    What is the value of a scientist and its impact upon the scientific thinking? How can we measure the prestige of a journal or of a conference? The evaluation of the scientific work of a scientist and the estimation of the quality of a journal or conference has long attracted significant interest, due to the benefits from obtaining an unbiased and fair criterion. Although it appears to be simple, defining a quality metric is not an easy task. To overcome the disadvantages of the present metrics used for ranking scientists and journals, J.E. Hirsch proposed a pioneering metric, the now famous h-index. In this article, we demonstrate several inefficiencies of this index and develop a pair of generalizations and effective variants of it to deal with scientist ranking and with publication forum ranking. The new citation indices are able to disclose trendsetters in scientific research, as well as researchers that constantly shape their field with their influential work, no matter how old they are. We exhibit the effectiveness and the benefits of the new indices to unfold the full potential of the h-index, with extensive experimental results obtained from DBLP, a widely known on-line digital library.Comment: 19 pages, 17 tables, 27 figure

    Young gastroenterologists angle: Friends of the UEG young talent group consensus statement on the structure of young gastroenterology sections

    Get PDF
    Young gastroenterologists; Consensus; GastroenterologyJoves gastroenteròlegs; Consens; GastroenterologiaJóvenes gastroenterólogos; Consenso; Gastroenterologí

    Massive stereo-based DTM production for Mars on cloud computers

    Get PDF
    Digital Terrain Model (DTM) creation is essential to improving our understanding of the formation processes of the Martian surface. Although there have been previous demonstrations of open-source or commercial planetary 3D reconstruction software, planetary scientists are still struggling with creating good quality DTMs that meet their science needs, especially when there is a requirement to produce a large number of high quality DTMs using "free" software. In this paper, we describe a new open source system to overcome many of these obstacles by demonstrating results in the context of issues found from experience with several planetary DTM pipelines. We introduce a new fully automated multi-resolution DTM processing chain for NASA Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo processing, called the Co-registration Ames Stereo Pipeline (ASP) Gotcha Optimised (CASP-GO), based on the open source NASA ASP. CASP-GO employs tie-point based multi-resolution image co-registration, and Gotcha sub-pixel refinement and densification. CASP-GO pipeline is used to produce planet-wide CTX and HiRISE DTMs that guarantee global geo-referencing compliance with respect to High Resolution Stereo Colour imaging (HRSC), and thence to the Mars Orbiter Laser Altimeter (MOLA); providing refined stereo matching completeness and accuracy. All software and good quality products introduced in this paper are being made open-source to the planetary science community through collaboration with NASA Ames, United States Geological Survey (USGS) and the Jet Propulsion Laboratory (JPL), Advanced Multi-Mission Operations System (AMMOS) Planetary Data System (PDS) Pipeline Service (APPS-PDS4), as well as browseable and visualisable through the iMars web based Geographic Information System (webGIS) system

    First results on the performance of the CMS global calorimeter trigger

    Get PDF
    The CMS Global Calorimeter Trigger (GCT) uses data from the CMS calorimeters to compute a number kinematical quantities which characterize the LHC event. The GTC output is used by the Global Trigger (GT) along with data from the Global Muon Trigger (GMT) to produce the Level-1 Accept (L1A) decision. The design for the current GCT system commenced early in 2006. After a rapid development phase all the different GCT components have been produced and a large fraction of them have been installed at the CMS electronics cavern (USC-55). There the GCT system has been under test since March 2007. This paper reports results from tests which took place at the USC-55. Initial tests aimed to test the integrity of the GCT data and establish that the proper synchronization had been achieved both internally within GCT as well as with the Regional Calorimeter Trigger (RCT) which provides the GCT input data and with GT which receives the GCT results. After synchronization and data integrity had been established, Monte Carlo Events with electrons in the final state were injected at the GCT inputs and were propagated to the GCT outputs. The GCT output was compared with the predictions of the GCT emulator model in the CMS Monte Carlo and were found to be identical

    Enhanced optical conductivity and many-body effects in strongly-driven photo-excited semi-metallic graphite

    Get PDF
    The excitation of quasi-particles near the extrema of the electronic band structure is a gateway to electronic phase transitions in condensed matter. In a many-body system, quasi-particle dynamics are strongly influenced by the electronic single-particle structure and have been extensively studied in the weak optical excitation regime. Yet, under strong optical excitation, where light fields coherently drive carriers, the dynamics of many-body interactions that can lead to new quantum phases remain largely unresolved. Here, we induce such a highly non-equilibrium many-body state through strong optical excitation of charge carriers near the van Hove singularity in graphite. We investigate the system's evolution into a strongly-driven photo-excited state with attosecond soft X-ray core-level spectroscopy. Surprisingly, we find an enhancement of the optical conductivity of nearly ten times the quantum conductivity and pinpoint it to carrier excitations in flat bands. This interaction regime is robust against carrier-carrier interaction with coherent optical phonons acting as an attractive force reminiscent of superconductivity. The strongly-driven non-equilibrium state is markedly different from the single-particle structure and macroscopic conductivity and is a consequence of the non-adiabatic many-body state
    corecore