268 research outputs found

    High-quality quantum point contact in two-dimensional GaAs (311)A hole system

    Full text link
    We studied ballistic transport across a quantum point contact (QPC) defined in a high-quality, GaAs (311)A two-dimensional (2D) hole system using shallow etching and top-gating. The QPC conductance exhibits up to 11 quantized plateaus. The ballistic one-dimensional subbands are tuned by changing the lateral confinement and the Fermi energy of the holes in the QPC. We demonstrate that the positions of the plateaus (in gate-voltage), the source-drain data, and the negative magneto-resistance data can be understood in a simple model that takes into account the variation, with gate bias, of the hole density and the width of the QPC conducting channel

    Resistance Spikes at Transitions between Quantum Hall Ferromagnets

    Full text link
    We report a new manifestation of first-order magnetic transitions in two-dimensional electron systems. This phenomenon occurs in aluminum arsenide quantum wells with sufficiently low carrier densities and appears as a set of hysteretic spikes in the resistance of a sample placed in crossed parallel and perpendicular magnetic fields, each spike occurring at the transition between states with different partial magnetizations. Our experiments thus indicate that the presence of magnetic domains at the transition starkly increases dissipation, an effect also suspected in other ferromagnetic materials. Analysis of the positions of the transition spikes allows us to deduce the change in exchange-correlation energy across the magnetic transition, which in turn will help improve our understanding of metallic ferromagnetism.Comment: 6 pages, 3 figure

    The Effect of Spin Splitting on the Metallic Behavior of a Two-Dimensional System

    Full text link
    Experiments on a constant-density two-dimensional hole system in a GaAs quantum well reveal that the metallic behavior observed in the zero-magnetic-field temperature dependence of the resistivity depends on the symmetry of the confinement potential and the resulting spin-splitting of the valence band

    Phase Diagrams for the ν\nu = 1/2 Fractional Quantum Hall Effect in Electron Systems Confined to Symmetric, Wide GaAs Quantum Wells

    Full text link
    We report an experimental investigation of fractional quantum Hall effect (FQHE) at the even-denominator Landau level filling factor ν\nu = 1/2 in very high quality wide GaAs quantum wells, and at very high magnetic fields up to 45 T. The quasi-two-dimensional electron systems we study are confined to GaAs quantum wells with widths WW ranging from 41 to 96 nm and have variable densities in the range of ≃4×1011\simeq 4 \times 10^{11} to ≃4×1010\simeq 4 \times 10^{10} cm−2^{-2}. We present several experimental phase diagrams for the stability of the ν=1/2\nu=1/2 FQHE in these quantum wells. In general, for a given WW, the 1/2 FQHE is stable in a limited range of intermediate densities where it has a bilayer-like charge distribution; it makes a transition to a compressible phase at low densities and to an insulating phase at high densities. The densities at which the ν=1/2\nu=1/2 FQHE is stable are larger for narrower quantum wells. Moreover, even a slight charge distribution asymmetry destabilizes the ν=1/2\nu=1/2 FQHE and turns the electron system into a compressible state. We also present a plot of the symmetric-to-antisymmetric subband separation (ΔSAS\Delta_{SAS}), which characterizes the inter-layer tunneling, vs density for various WW. This plot reveals that ΔSAS\Delta_{SAS} at the boundary between the compressible and FQHE phases increases \textit{linearly} with density for all the samples. Finally, we summarize the experimental data in a diagram that takes into account the relative strengths of the inter-layer and intra-layer Coulomb interactions and ΔSAS\Delta_{SAS}. We conclude that, consistent with the conclusions of some of the previous studies, the ν=1/2\nu=1/2 FQHE observed in wide GaAs quantum wells with symmetric charge distribution is stabilized by a delicate balance between the inter-layer and intra-layer interactions, and is very likely described by a two-component (Ψ311\Psi_{311}) state.Comment: Accepted for publication in Phys. Rev.

    Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes

    Full text link
    We report low-temperature resistance measurements in a modulation-doped, (311)A GaAs two-dimensional hole system as a function of applied in-plane strain. The data reveal a strong but anisotropic piezoresistance whose magnitude depends on the density as well as the direction along which the resistance is measured. At a density of 1.6×10111.6\times10^{11} cm−2^{-2} and for a strain of about 2×10−42\times10^{-4} applied along [011ˉ\bar{1}], e.g., the resistance measured along this direction changes by nearly a factor of two while the resistance change in the [2ˉ\bar{2}33] direction is less than 10% and has the opposite sign. Our accurate energy band calculations indicate a pronounced and anisotropic deformation of the heavy-hole dispersion with strain, qualitatively consistent with the experimental data. The extremely anisotropic magnitude of the piezoresistance, however, lacks a quantitative explanation.Comment: 4 pages. Submitted to Applied Physics Letter
    • …
    corecore