39 research outputs found

    Ventilatory Chaos Is Impaired in Carotid Atherosclerosis

    Get PDF
    Ventilatory chaos is strongly linked to the activity of central pattern generators, alone or influenced by respiratory or cardiovascular afferents. We hypothesized that carotid atherosclerosis should alter ventilatory chaos through baroreflex and autonomic nervous system dysfunctions. Chaotic dynamics of inspiratory flow was prospectively evaluated in 75 subjects undergoing carotid ultrasonography: 27 with severe carotid stenosis (>70%), 23 with moderate stenosis (<70%), and 25 controls. Chaos was characterized by the noise titration method, the correlation dimension and the largest Lyapunov exponent. Baroreflex sensitivity was estimated in the frequency domain. In the control group, 92% of the time series exhibit nonlinear deterministic chaos with positive noise limit, whereas only 68% had a positive noise limit value in the stenoses groups. Ventilatory chaos was impaired in the groups with carotid stenoses, with significant parallel decrease in the noise limit value, correlation dimension and largest Lyapunov exponent, as compared to controls. In multiple regression models, the percentage of carotid stenosis was the best in predicting the correlation dimension (p<0.001, adjusted R2: 0.35) and largest Lyapunov exponent (p<0.001, adjusted R2: 0.6). Baroreflex sensitivity also predicted the correlation dimension values (p = 0.05), and the LLE (p = 0.08). Plaque removal after carotid surgery reversed the loss of ventilatory complexity. To conclude, ventilatory chaos is impaired in carotid atherosclerosis. These findings depend on the severity of the stenosis, its localization, plaque surface and morphology features, and is independently associated with baroreflex sensitivity reduction. These findings should help to understand the determinants of ventilatory complexity and breathing control in pathological conditions

    Capsaicin- resistant arterial baroreceptors

    Get PDF
    BACKGROUND: Aortic baroreceptors (BRs) comprise a class of cranial afferents arising from major arteries closest to the heart whose axons form the aortic depressor nerve. BRs are mechanoreceptors that are largely devoted to cardiovascular autonomic reflexes. Such cranial afferents have either lightly myelinated (A-type) or non-myelinated (C-type) axons and share remarkable cellular similarities to spinal primary afferent neurons. Our goal was to test whether vanilloid receptor (TRPV1) agonists, capsaicin (CAP) and resiniferatoxin (RTX), altered the pressure-discharge properties of peripheral aortic BRs. RESULTS: Periaxonal application of 1 μM CAP decreased the amplitude of the C-wave in the compound action potential conducting at <1 m/sec along the aortic depressor nerve. 10 μM CAP eliminated the C-wave while leaving intact the A-wave conducting in the A-δ range (<12 m/sec). These whole nerve results suggest that TRPV1 receptors are expressed along the axons of C- but not A-conducting BR axons. In an aortic arch – aortic nerve preparation, intralumenal perfusion with 1 μM CAP had no effect on the pressure-discharge relations of regularly discharging, single fiber BRs (A-type) – including the pressure threshold, sensitivity, frequency at threshold, or maximum discharge frequency (n = 8, p > 0.50) but completely inhibited discharge of an irregularly discharging BR (C-type). CAP at high concentrations (10–100 μM) depressed BR sensitivity in regularly discharging BRs, an effect attributed to non-specific actions. RTX (≤ 10 μM) did not affect the discharge properties of regularly discharging BRs (n = 7, p > 0.18). A CAP-sensitive BR had significantly lower discharge regularity expressed as the coefficient of variation than the CAP-resistant fibers (p < 0.002). CONCLUSION: We conclude that functional TRPV1 channels are present in C-type but not A-type (A-δ) myelinated aortic arch BRs. CAP has nonspecific inhibitory actions that are unlikely to be related to TRV1 binding since such effects were absent with the highly specific TRPV1 agonist RTX. Thus, CAP must be used with caution at very high concentrations

    Modeling the Afferent Dynamics of the Baroreflex Control System

    Get PDF
    In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods

    Peripheral neural input to neurons of the stellate ganglion in dog

    No full text
    corecore