113 research outputs found

    Long-term survival after onset of blast crisis in chronic granulocytic leukemia: Case report and therapeutic considerations

    Get PDF
    Current analysis indicates a median survival of 3.6 months in 356 cases of chronic granulocytic leukemia after onset of blast transformation. Thirty-five (10.0%) complete remissions (CR), all of short duration, were observed. Closer scrutiny of the reported clinical experience offers clues for improving this poor outlook. A 76% CR rate can be extracted from this total experience by identifying cases treated with cytoslne arabinoside combined with one or more other agents. In isolated reports, weekly vincristine and prednisone have yielded good remission rates. Two general morphologic types of blasts can be distinguished by cytochemical stains and other features: lymphoid and nonlymphoid (myeloid, monocytoid). We suggest that the lymphoid type of blast crisis Is more responsive to vincristine-prednisone, whereas combination chemotherapy, containing cytoslne arabinoside, is more effective in nonlymphoid crises. We report a blast crisis in which two CRs occurred. The patient survived 19 months after onset, possibly because he also received BCC

    Identifying Thresholds for Ecosystem-Based Management

    Get PDF
    Background One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management action. Methodology/Principal Findings To assist resource managers and policymakers in developing EBM decision criteria, we introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of protecting an ecosystem\u27s structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs. Conclusions/Significance For any policy scenario, an understanding of utility thresholds provides insight into the amount and type of management intervention required to make significant progress toward improved ecosystem structure and function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures, to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management

    Productivity Improvement of Pre-cast Concrete Installation

    Get PDF
    The production process of pre-cast concrete installation is analyzed to investigate possible ways for onsite productivity improvement. Although manufactured construction enjoys higher quality and productivity, it is observed that it suffers delays compared to site built construction. Delay causes and respective severity are analyzed for improvement. Firstly, the production process is investigated using the production delay model. Forty cycle data are used in the analysis. The comparative impact and severity are measured for five delay causes, namely: labor, environmental, management, equipment and material on overall system productivity. It is found via the production delay analysis that material, followed by equipment availability then labor were major contributors to system delay. Secondly, statistical analysis on the installation cycle time of three pre-cast component types is carried out, in order to insure whether the delay observed via the first step is attributed to variation of pre-cast pieces. The data used in step one above were not pertinent to product type; therefore, other 90 cycle data are utilized in the statistical analysis, which indicated high variability in cycle time due to product type. Improvement can be achieved through proper scheduling of project equipment and resources. In addition, improvement should target the reduction of installation cycle time variability due to product type

    Successful Internalization of a Chronic Biliary Cutaneous Fistula After Liver Transplantation: Deepithelializing the Fistula Tract

    Get PDF
    Biliary cutaneous fistulas are uncommon sequelae after biliary surgery and can be a source of significant morbidity. We describe a liver recipient who developed a biliary cutaneous fistula secondary to hepatic artery thrombosis; this subsequently drained for over 7 years. Through a novel approach, using the transabdominal fistula tract as a conduit, the fistula skin opening was deepithelialized and anastomosed to a jejunal loop, internally draining the tract. For over 7 years postoperatively, this internal drainage procedure has continued to function effectively. This approach may have value in internalizing longstanding biliary cutaneous fistulas in well-selected patients in whom there is no existing biliary ductal system or the existing system anatomically does not lend itself to restoration of functional internal drainage through conventional approaches

    Potential for ecological nonlinearities and thresholds to inform Pacific salmon management

    Get PDF
    AbstractEcology is often governed by nonlinear dynamics. Nonlinear ecological relationships can include thresholds—incremental changes in drivers that provoke disproportionately large ecological responses. Among the species that experience nonlinear and threshold dynamics are Pacific salmon (Oncorhynchus spp.). These culturally, ecologically, and economically significant fishes are in many places declining and management focal points. Often, managers can influence or react to ecological conditions that salmon experience, suggesting that nonlinearities, especially thresholds, may provide opportunities to inform decisions. However, nonlinear dynamics are not always invoked in management decisions involving salmon. Here, we review reported nonlinearities and thresholds in salmon ecology, describe potential applications that scientists and managers could develop to leverage nonlinear dynamics, and offer a path toward decisions that account for ecological nonlinearities and thresholds to improve salmon outcomes. It appears that nonlinear dynamics are not uncommon in salmon ecology and that many management arenas may potentially leverage them to enable more effective or efficient decisions. Indeed, decisions guided by nonlinearities and thresholds may be particularly desirable considering salmon management arenas are often characterized by limited resources and mounting ecological stressors, practical constraints, and conservation challenges. More broadly, many salmon systems are data‐rich and there are an extensive range of ecological contexts in which salmon are sensitive to anthropogenic decisions. Approaches developed to leverage nonlinearities in salmon ecology may serve as examples that may inform analogous approaches in other systems and taxa

    Selecting Indicator Portfolios for Marine Species and Food Webs: A Puget Sound Case Study

    Get PDF
    Ecosystem-based management (EBM) has emerged as a promising approach for maintaining the benefits humans want and need from the ocean, yet concrete approaches for implementing EBM remain scarce. A key challenge lies in the development of indicators that can provide useful information on ecosystem status and trends, and assess progress towards management goals. In this paper, we describe a generalized framework for the methodical and transparent selection of ecosystem indicators. We apply the framework to the second largest estuary in the United States – Puget Sound, Washington – where one of the most advanced EBM processes is currently underway. Rather than introduce a new method, this paper integrates a variety of familiar approaches into one step-by-step approach that will lead to more consistent and reliable reporting on ecosystem condition. Importantly, we demonstrate how a framework linking indicators to policy goals, as well as a clearly defined indicator evaluation and scoring process, can result in a portfolio of useful and complementary indicators based on the needs of different users (e.g., policy makers and scientists). Although the set of indicators described in this paper is specific to marine species and food webs, we provide a general approach that could be applied to any set of management objectives or ecological system

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Integrated Risk Assessment for the Blue Economy

    Get PDF
    With the anticipated boom in the ‘blue economy’ and associated increases in industrialization across the world’s oceans, new and complex risks are being introduced to ocean ecosystems. As a result, conservation and resource management increasingly look to factor in potential interactions among the social, ecological and economic components of these systems. Investigation of these interactions requires interdisciplinary frameworks that incorporate methods and insights from across the social and biophysical sciences. Risk assessment methods, which have been developed across numerous disciplines and applied to various real-world settings and problems, provide a unique connection point for cross-disciplinary engagement. However, research on risk is often conducted in distinct spheres by experts whose focus is on narrow sources or outcomes of risk. Movement toward a more integrated treatment of risk to ensure a balanced approach to developing and managing ocean resources requires cross-disciplinary engagement and understanding. Here, we provide a primer on risk assessment intended to encourage the development and implementation of integrated risk assessment processes in the emerging blue economy. First, we summarize the dominant framework for risk in the ecological/biophysical sciences. Then, we discuss six key insights from the long history of risk research in the social sciences that can inform integrated assessments of risk: (1) consider the subjective nature of risk, (2) understand individual social and cultural influences on risk perceptions, (3) include diverse expertise, (4) consider the social scales of analysis, (5) incorporate quantitative and qualitative approaches, and (6) understand interactions and feedbacks within systems. Finally, we show how these insights can be incorporated into risk assessment and management, and apply them to a case study of whale entanglements in fishing gear off the United States west coast

    Shelters and Their Use by Fishes on Fringing Coral Reefs

    Get PDF
    Coral reef fish density and species richness are often higher at sites with more structural complexity. This association may be due to greater availability of shelters, but surprisingly little is known about the size and density of shelters and their use by coral reef fishes. We quantified shelter availability and use by fishes for the first time on a Caribbean coral reef by counting all holes and overhangs with a minimum entrance diameter ≥3 cm in 30 quadrats (25 m2) on two fringing reefs in Barbados. Shelter size was highly variable, ranging from 42 cm3 to over 4,000,000 cm3, with many more small than large shelters. On average, there were 3.8 shelters m−2, with a median volume of 1,200 cm3 and a total volume of 52,000 cm3m−2. The number of fish per occupied shelter ranged from 1 to 35 individual fishes belonging to 66 species, with a median of 1. The proportion of shelters occupied and the number of occupants increased strongly with shelter size. Shelter density and total volume increased with substrate complexity, and this relationship varied among reef zones. The density of shelter-using fish was much more strongly predicted by shelter density and median size than by substrate complexity and increased linearly with shelter density, indicating that shelter availability is a limiting resource for some coral reef fishes. The results demonstrate the importance of large shelters for fish density and support the hypothesis that structural complexity is associated with fish abundance, at least in part, due to its association with shelter availability. This information can help identify critical habitat for coral reef fishes, predict the effects of reductions in structural complexity of natural reefs and improve the design of artificial reefs
    corecore