446 research outputs found
TYPE II DNA: when the interfacial energy becomes negative
An important step in transcription of a DNA base sequence to a protein is the
initiation from the exact starting point, called promoter region. We propose a
physical mechanism for identification of the promoter region, which relies on a
new classification of DNAs into two types, Type-I and Type-II, like
superconductors, depending on the sign of the energy of the interface
separating the zipped and the unzipped phases. This is determined by the
energies of helical ordering and stretching over two independent length scales.
The negative interfacial energy in Type II DNA leads to domains of helically
ordered state separated by defect regions, or blobs, enclosed by the
interfaces. The defect blobs, pinned by non-coding promoter regions, would be
physically distinct from all other types of bubbles. We also show that the
order of the melting transition under a force is different for Type I and Type
II.Comment: 4 pages, 2 figures, Eq.(4) corrected in 4th versio
The organic waste gold rush: optimising resource recovery in the UK bioeconomy
The use of organic waste in the bioeconomy has the potential to contribute towards the UK’s strategic goals of clean growth, resource security and reducing use of fossil fuels. While the reduction of avoidable organic waste remains a priority, a number of waste streams are likely to persist and could provide a significant feedstock for the UK bioeconomy. The greatest environmental, social and economic benefits of resource recovery from organic wastes are associated with the displacement of fossil fuel derived chemicals and materials, and the combined products of nutrients and energy from anaerobic digestion. Organic wastes offer multiple resources that can be exploited most efficiently by technologies working in synergy with each other. Investments into different options for using organic wastes are driven by government policy and resource demand, in addition to technology readiness. Policy and regulations should encourage industrial synergies and an increase in the diversity of resources recovered from organic waste in order to be able to respond to future resource demands
Thermodynamics as a nonequilibrium path integral
Thermodynamics is a well developed tool to study systems in equilibrium but
no such general framework is available for non-equilibrium processes. Only hope
for a quantitative description is to fall back upon the equilibrium language as
often done in biology. This gap is bridged by the work theorem. By using this
theorem we show that the Barkhausen-type non-equilibrium noise in a process,
repeated many times, can be combined to construct a special matrix
whose principal eigenvector provides the equilibrium distribution. For an
interacting system , and hence the equilibrium distribution, can be
obtained from the free case without any requirement of equilibrium.Comment: 15 pages, 5 eps files. Final version to appear in J Phys.
Advanced eLectrical Bus (ALBus) CubeSat: From Build to Flight
Advanced eLectrical Bus (ALBus) CubeSat is a technology demonstration mission of a 3-U CubeSat with an advanced digitally controlled electrical power system and novel use of Shape Memory Alloy (SMA) technology for reliable deployable solar array mechanisms. The primary objective was to advance the power management and distribution (PMAD) capabilities to enable future missions requiring more flexible and reliable power systems with higher output power capabilities. Goals included demonstration of 100W distribution to a target electrical load, response to continuous and fast transient power requirements, and exhibition of reliable deployment of solar arrays and antennas utilizing re-settable SMA mechanisms. The power distribution function of the ALBus PMAD system is unique in the total power to target load capability, as power is distributed from batteries to provide 100W of power directly to a resistive load. The deployable solar arrays utilize NASA’s Nickel-Titanium-Palladium-Platinum (NiTiPdPt) high-temperature SMAs for the retention and release mechanism, and a superelastic binary NiTi alloy for the hinge component. The project launched as part of the CubeSat Launch Initiative (CLI) Educational Launch of Nanosatellites (ELaNa) XIX mission on Rocket Lab’s Electron in December 2018. This paper summarizes the final launched design and the lessons learned from build to flight
Statistics of leading digits leads to unification of quantum correlations
We show that the frequency distribution of the first significant digits of
the numbers in the data sets generated from a large class of measures of
quantum correlations, which are either entanglement measures, or belong to the
information-theoretic paradigm, exhibit a universal behaviour. In particular,
for Haar uniformly simulated arbitrary two-qubit states, we find that the
first-digit distribution corresponding to a collection of chosen computable
quantum correlation quantifiers tend to follow the first-digit law, known as
the Benford's law, when the rank of the states increases. Considering a
two-qubit state which is obtained from a system governed by paradigmatic spin
Hamiltonians, namely, the XY model in a transverse field, and the XXZ model, we
show that entanglement as well as information theoretic measures violate the
Benford's law. We quantitatively discuss the violation of the Benford's law by
using a violation parameter, and demonstrate that the violation parameter can
signal quantum phase transitions occurring in these models. We also comment on
the universality of the statistics of first significant digits corresponding to
appropriate measures of quantum correlations in the case of multipartite
systems as well as systems in higher dimensions.Comment: v1: 11 pages, 5 figures, 2 tables; v2: 11 pages, 6 figures, 2 tables,
new results added, extended version of the published pape
- …