254 research outputs found
Identification of serum glycoprotein ligands for the immunomodulatory receptor blood dendritic cell antigen 2
Blood dendritic cell antigen 2 (BDCA-2) is a C-type lectin found on the surface of plasmacytoid dendritic cells. It functions as a glycan-binding receptor that downregulates the production of type I interferons and thus plays a role in oligosaccharide-mediated immunomodulation. The carbohydrate recognition domain in BDCA-2 binds selectively to galactose-terminated bi-antennary glycans. Because the plasmacytoid dendritic cells function in a plasma environment rich in glycoproteins, experiments have been undertaken to identify endogenous ligands for blood dendritic cell antigen 2. A combination of blotting, affinity chromatography and proteomic analysis reveals that serum glycoprotein ligands for BDCA-2 include IgG, IgA and IgM. Compared to binding of IgG, which was previously described, IgA and IgM bind with higher affinity. The association constants for the different subclasses of immunoglobulins are below and roughly proportional to the serum concentrations of these glycoprotein ligands. Binding to the other main serum glycoprotein ligand, α2-macroglobulin, is independent of whether this protease inhibitor is activated. Binding to all of these glycoprotein ligands is mediated predominantly by bi-antennary glycans in which each branch bears a terminal galactose residue. The different affinities of the glycoprotein ligands reflect the different numbers of these galactose-terminated glycans and their degree of exposure on the native glycoproteins. The results suggest that normal serum levels of immunoglobulins could downmodulate interferon stimulation of further antibody production
Influence of effective stress and pore‐fluid pressure on fault strength and slip localization in carbonate slip zones
The presence of pressurized fluids influences the mechanical behaviour of faults. To test the roles of normal stress and fluid pressure on shear strength and localization behaviour of calcite gouges, we conducted a series of rotary‐shear experiments with pore‐fluid pressures up to 10.5 MPa and difference between normal stress and fluid pressure up to 11.2 MPa. Calcite gouges were sheared for displacements of 0.3 m to several meters at slip rates of 1 mm/s and 1 m/s. Drainage conditions in experiments were constrained from estimates of the hydraulic diffusivity. Gouges were found to be drained at 1 mm/s, but possibly partially undrained during sliding at 1 m/s. Shear strength obeys an effective‐stress law with an effective‐stress coefficient close to unity with a friction coefficient of c. 0.7 that decreases to 0.19 due to dynamic weakening. The degree of comminution and slip localization constrained from experimental microstructures depends on the effective normal stress. Slip localization in calcite gouges does not occur at low effective normal stress. The presence of pore fluids lowers the shear strength of gouges sheared at 1 mm/s and causes an accelerated weakening at 1 m/s compared to dry gouges, possibly due to enhanced subcritical crack growth and intergranular lubrication. Thermal pressurization occurs only after dynamic weakening when friction is generally low and relatively independent of normal stress and therefore unaffected by thermal pressurization. The experimental results are consistent with the view that the presence of pressurized fluid in carbonate‐bearing faults can facilitate earthquake nucleation
8-amino-6-methoxyquinoline-tetrazole hybrids: Impact of linkers on antiplasmodial activity
A new series of compounds was prepared from 6-methoxyquinolin-8-amine or its N-(2-aminoethyl) analogue via Ugi-azide reaction. Their linkers between the quinoline and the tert-butyltetrazole moieties differ in chain length, basicity and substitution. Compounds were tested for their antiplasmodial activity against Plasmodium falciparum NF54 as well as their cytotoxicity against L-6-cells. The activity and the cytotoxicity were strongly influenced by the linker and its substitution. The most active compounds showed good activity and promising selectivity
Synthesis and antiprotozoal activity of azabicyclo-nonane pyrimidine hybrids
2,4-Diaminopyrimidines and (dialkylamino)azabicyclo-nonanes possess activity against protozoan parasites. A series of fused hybrids were synthesized and tested in vitro against pathogens of malaria tropica and sleeping sickness. The activities and selectivities of compounds strongly depended on the substitution pattern of both ring systems as well as on the position of the nitrogen atom in the bicycles. The most promising hybrids of 3-azabicyclo-nonane with 2-aminopyrimidine showed activity against P. falciparum NF54 in submicromolar concentration and high selectivity. A hybrid with pyrrolidino substitution of the 2-azabicyclo-nonane as well as of the pyrimidine moiety exhibited promising activity against the multiresistant K1 strain of P. falciparum. A couple of hybrids of 2-azabicyclo-nonanes with 2-(dialkylamino)pyrimidines possessed high activity against Trypanosoma brucei rhodesiense STIB900 and good selectivity
New acyl derivatives of 3-aminofurazanes and their antiplasmodial activities
An N-acylated furazan-3-amine of a Medicines for Malaria Venture (MMV) project has shown activity against different strains of Plasmodium falciparum. Seventeen new derivatives were prepared and tested in vitro for their activities against blood stages of two strains of Plasmodium falciparum. Several structure-activity relationships were revealed. The activity strongly depended on the nature of the acyl moiety. Only benzamides showed promising activity. The substitution pattern of their phenyl ring affected the activity and the cytotoxicity of compounds. In addition, physicochemical parameters were calculated (log P, log D, ligand efficiency) or determined experimentally (permeability) via a PAMPA. The N-(4-(3,4-diethoxyphenyl)-1,2,5-oxadiazol-3-yl)-3-(trifluoromethyl)benzamide possessed good physicochemical properties and showed high antiplasmodial activity against a chloroquine-sensitive strain (IC50(NF54) = 0.019 microM) and even higher antiplasmodial activity against a multiresistant strain (IC50(K1) = 0.007 microM). Compared to the MMV compound, the permeability and the activity against the multiresistant strain were improved
Palladium-catalysed synthesis of arylnaphthoquinones as antiprotozoal and antimycobacterial agents
Malaria and tuberculosis are still among the leading causes of death in low-income countries. The 1,4-naphthoquinone (NQ) scaffold can be found in a variety of anti-infective agents. Herein, we report an optimised, high yield process for the preparation of various 2-arylnaphthoquinones by a palladium-catalysed Suzuki reaction. All synthesised compounds were evaluated for their in-vitro antiprotozoal and antimycobacterial activity. Antiprotozoal activity was assessed against Plasmodium falciparum (P.f.) NF54 and Trypanosoma brucei rhodesiense (T.b.r.) STIB900, and antimycobacterial activity against Mycobacterium smegmatis (M.s.) mc(2) 155. Substitution with pyridine and pyrimidine rings significantly increased antiplasmodial potency of our compounds. The 2-aryl-NQs exhibited trypanocidal activity in the nM range with a very favourable selectivity profile. (Pseudo)halogenated aryl-NQs were found to have a pronounced effect indicating inhibition of mycobacterial efflux pumps. Cytotoxicity of all compounds towards L6 cells was evaluated and the respective selectivity indices (SI) were calculated. In addition, the physicochemical parameters of the synthesised compounds were discussed
New 2‑aminopyrimidine derivatives and their antitrypanosomal and antiplasmodial activities
Novel 2-aminopyrimidine derivatives were prepared from acyclic starting materials, benzylidene acetones and ammonium thiocyanates, via 5 steps, including ring closure, aromatization, S-methylation, oxidation to methylsulfonyl compounds, and formation of guanidines with suitable amines. The prepared compounds differ from each other by the substitutions of their amino group and of their phenyl ring. The 2-aminopyrimidines were tested by use of microplate assays for their in vitro activities against a causative organism of sleeping sickness, Trypanosoma brucei rhodesiense, as well as against a causative organism of malaria, Plasmodium falciparum NF54. Their cytotoxic properties were determined with L-6 cells (rat skeletal myoblasts). Some of the compounds exhibited quite good antitrypanosomal activity, and others showed excellent antiplasmodial activity. The influence of the structural modifications on these activities is discussed
Antiprotozoal activity of azabicyclo-nonanes linked to tetrazole or sulfonamide cores
N-(Aminoalkyl)azabicyclo[3.2.2]nonanes possess antiplasmodial and antitrypanosomal activity. A series with terminal tetrazole or sulfonamido partial structure was prepared. The structures of all new compounds were confirmed by NMR and IR spectroscopy and by mass spectral data. A single crystal structure analysis enabled the distinction between isomers. The antiprotozoal activities were examined in vitro against strains of Plasmodium falciparum and Trypanosoma brucei rhodesiense (STIB 900). The most active sulfonamide and tetrazole derivates showed activities in the submicromolar range
Synthesis and structure-activity relationships of new 2-phenoxybenzamides with antiplasmodial activity
The 2-phenoxybenzamide 1 from theMedicines for Malaria Venture Malaria Box Project has shown promising multi-stage activity against different strains of P. falciparum. It was successfully synthesized via a retrosynthetic approach. Subsequently, twenty-one new derivatives were prepared and tested for their in vitro activity against blood stages of the NF54 strain of P. falciparum. Several insights into structure-activity relationships were revealed. The antiplasmodial activity and cytotoxicity of compounds strongly depended on the substitution pattern of the anilino partial structure as well as on the size of substituents. The diaryl ether partial structure had further impacts on the activity. Additionally, several physicochemical and pharmacokinetic parameters were calculated (log P, log D7.4 and ligand efficiency) or determined experimentally (passive permeability and CYP3A4 inhibition). The tertbutyl- 4-{4-[2-(4-fluorophenoxy)-3-(trifluoromethyl)benzamido]phenyl}piperazine-1-carboxylate possesses high antiplasmodial activity against P. falciparum NF54 (PfNF54 IC50 = 0.2690 M) and very low cytotoxicity (L-6 cells IC50 = 124.0 M) resulting in an excellent selectivity index of 460. Compared to the lead structure 1 the antiplasmodial activity was improved as well as the physicochemical and some pharmacokinetic parameters
Skeletal correlates for body mass estimation in modern and fossil flying birds.
Scaling relationships between skeletal dimensions and body mass in extant birds are often used to estimate body mass in fossil crown-group birds, as well as in stem-group avialans. However, useful statistical measurements for constraining the precision and accuracy of fossil mass estimates are rarely provided, which prevents the quantification of robust upper and lower bound body mass estimates for fossils. Here, we generate thirteen body mass correlations and associated measures of statistical robustness using a sample of 863 extant flying birds. By providing robust body mass regressions with upper- and lower-bound prediction intervals for individual skeletal elements, we address the longstanding problem of body mass estimation for highly fragmentary fossil birds. We demonstrate that the most precise proxy for estimating body mass in the overall dataset, measured both as coefficient determination of ordinary least squares regression and percent prediction error, is the maximum diameter of the coracoid's humeral articulation facet (the glenoid). We further demonstrate that this result is consistent among the majority of investigated avian orders (10 out of 18). As a result, we suggest that, in the majority of cases, this proxy may provide the most accurate estimates of body mass for volant fossil birds. Additionally, by presenting statistical measurements of body mass prediction error for thirteen different body mass regressions, this study provides a much-needed quantitative framework for the accurate estimation of body mass and associated ecological correlates in fossil birds. The application of these regressions will enhance the precision and robustness of many mass-based inferences in future paleornithological studies
- …