14,305 research outputs found
The Relativity Concept Inventory: development, analysis and results
We report on a concept inventory for special relativity: the development
process, data analysis methods, and results from an introductory relativity
class. The Relativity Concept Inventory tests understanding of kinematic
relativistic concepts. An unusual feature is confidence testing for each
question. This can provide additional information; for example high confidence
correlated with incorrect answers suggests a misconception. A novel aspect of
our data analysis is the use of Monte Carlo simulations to determine the
significance of correlations. This approach is particularly useful for small
sample sizes, such as ours. Our results include a gender bias that was not
present in other assessment, similar to that reported for the Force Concept
Inventory
The fermion bag approach to lattice field theories
We propose a new approach to the fermion sign problem in systems where there
is a coupling such that when it is infinite the fermions are paired into
bosons and there is no fermion permutation sign to worry about. We argue that
as becomes finite fermions are liberated but are naturally confined to
regions which we refer to as {\em fermion bags}. The fermion sign problem is
then confined to these bags and may be solved using the determinantal trick. In
the parameter regime where the fermion bags are small and their typical size
does not grow with the system size, construction of Monte Carlo methods that
are far more efficient than conventional algorithms should be possible. In the
region where the fermion bags grow with system size, the fermion bag approach
continues to provide an alternative approach to the problem but may lose its
main advantage in terms of efficiency. The fermion bag approach also provides
new insights and solutions to sign problems. A natural solution to the "silver
blaze problem" also emerges. Using the three dimensional massless lattice
Thirring model as an example we introduce the fermion bag approach and
demonstrate some of these features. We compute the critical exponents at the
quantum phase transition and find and .Comment: 31 pages, 9 figures, 5 table
Seismic response to evolving injection at the Rotokawa geothermal field, New Zealand
Catalogs of microseismicity are routinely compiled at geothermal reservoirs and provide valuable insights into reservoir structure and fluid movement. Hypocentral locations are typically used to infer the orientations of structures and constrain the extent of the permeable reservoir. However, frequency-magnitude distributions may contain additional, and underused, information about the distribution of pressure. Here, we present a four-year catalog of seismicity for the Rotokawa geothermal field in the central TaupĆ Volcanic Zone, New Zealand starting two years after the commissioning of the 140 MWe Nga Awa Purua power station. Using waveform-correlation-based signal detection we double the size of the previous earthquake catalog, refine the location and orientation of two reservoir faults and identify a new structure. We find the rate of seismicity to be insensitive to major changes in injection strategy during the study period, including the injectivity decline and shift of injection away from the dominant injector, RK24. We also map the spatial distribution of the earthquake frequency-magnitude distribution, or b-value, and show that it increases from âŒ1.0 to âŒ1.5 with increasing depth below the reservoir. As has been proposed at other reservoirs, we infer that these spatial variations reflect the distribution of pressure in the reservoir, where areas of high b-value correspond to areas of high pore-fluid pressure and a broad distribution of activated fractures. This analysis is not routinely conducted by geothermal operators but shows promise for using earthquake b-value as an additional tool for reservoir monitoring and management
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
Heavy Quark Fragmentation to Baryons Containing Two Heavy Quarks
We discuss the fragmentation of a heavy quark to a baryon containing two
heavy quarks of mass . In this limit the heavy quarks
first combine perturbatively into a compact diquark with a radius small
compared to , which interacts with the light hadronic
degrees of freedom exactly as does a heavy antiquark. The subsequent evolution
of this diquark to a baryon is identical to the fragmentation of a
heavy antiquark to a meson. We apply this analysis to the production of baryons
of the form , , and .Comment: 9 pages, 1 figure included, uses harvmac.tex and epsf.tex, UCSD/PTH
93-11, CALT-68-1868, SLAC-PUB-622
Baryon Axial Charge in a Finite Volume
We compute finite-volume corrections to nucleon matrix elements of the
axial-vector current. We show that knowledge of this finite-volume dependence
--as well as that of the nucleon mass-- obtained using lattice QCD will allow a
clean determination of the chiral-limit values of the nucleon and
Delta-resonance axial-vector couplings.Comment: 11 pages, 8 figure
Limits to the analogue Hawking temperature in a Bose-Einstein condensate
Quasi-one dimensional outflow from a dilute gas Bose-Einstein condensate
reservoir is a promising system for the creation of analogue Hawking radiation.
We use numerical modeling to show that stable sonic horizons exist in such a
system under realistic conditions, taking into account the transverse
dimensions and three-body loss. We find that loss limits the analogue Hawking
temperatures achievable in the hydrodynamic regime, with sodium condensates
allowing the highest temperatures. A condensate of 30,000 atoms, with
transverse confinement frequency omega_perp=6800*2*pi Hz, yields horizon
temperatures of about 20 nK over a period of 50 ms. This is at least four times
higher than for other atoms commonly used for Bose-Einstein condensates.Comment: 9 pages, 4 figures, replaced with published versio
The Impact of "Deregulation" on Regulator Behavior: An Empirical Analysis of the Telecommunications Act of 1996
This paper examines how regulators set local prices in response to the changes brought on by the Telecommunications Act of 1996 (âTelecom Actâ). We are particularly interested in the extent to which state regulators set prices that promoted efficiency or were influenced by private-interest groups who had secured rents under a regime of regulated monopoly. Using regional Bell operating company (RBOC) data, our empirical results indicate that private interests continue to influence the structure of retail and wholesale prices, although their influence appears to be waning. We find that changes to the regulatory structure, as measured by federal approval of RBOC Section 271 applications that open up markets to competition and universal service subsidies, resulted in a re-balancing of retail prices and lower overall price levels.competition, political contributions, private interest, public interest, regulation, telecommunications, universal service
Quantum depletion of collapsing Bose-Einstein condensates
We perform the first numerical three-dimensional studies of quantum field
effects in the Bosenova experiment on collapsing condensates by E. Donley et
al. [Nature 415, 39 (2002)] using the exact experimental geometry. In a
stochastic truncated Wigner simulation of the collapse, the collapse times are
larger than the experimentally measured values. We find that a finite
temperature initial state leads to an increased creation rate of uncondensed
atoms, but not to a reduction of the collapse time. A comparison of the
time-dependent Hartree-Fock-Bogoliubov and Wigner methods for the more
tractable spherical trap shows excellent agreement between the uncondensed
populations. We conclude that the discrepancy between the experimental and
theoretical values of the collapse time cannot be explained by Gaussian quantum
fluctuations or finite temperature effects.Comment: 9 pages, 4 figures, replaced with published versio
Classical noise and flux: the limits of multi-state atom lasers
By direct comparison between experiment and theory, we show how the classical
noise on a multi-state atom laser beam increases with increasing flux. The
trade off between classical noise and flux is an important consideration in
precision interferometric measurement. We use periodic 10 microsecond
radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein
condensate. The resulting atom laser beam has suprising structure which is
explained using three dimensional simulations of the five state
Gross-Pitaevskii equations.Comment: 4 pages, 3 figure
- âŠ