73,354 research outputs found

    Universality class for bootstrap percolation with m=3m=3 on the cubic lattice

    Full text link
    We study the m=3m=3 bootstrap percolation model on a cubic lattice, using Monte Carlo simulation and finite-size scaling techniques. In bootstrap percolation, sites on a lattice are considered occupied (present) or vacant (absent) with probability pp or 1−p1-p, respectively. Occupied sites with less than mm occupied first-neighbours are then rendered unoccupied; this culling process is repeated until a stable configuration is reached. We evaluate the percolation critical probability, pcp_c, and both scaling powers, ypy_p and yhy_h, and, contrarily to previous calculations, our results indicate that the model belongs to the same universality class as usual percolation (i.e., m=0m=0). The critical spanning probability, R(pc)R(p_c), is also numerically studied, for systems with linear sizes ranging from L=32 up to L=480: the value we found, R(pc)=0.270±0.005R(p_c)=0.270 \pm 0.005, is the same as for usual percolation with free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.

    Fixed points and vacuum energy of dynamically broken gauge theories

    Get PDF
    We show that if a gauge theory with dynamical symmetry breaking has non-trivial fixed points, they will correspond to extrema of the vacuum energy. This relationship provides a different method to determine fixed points.Comment: 17 pages, uuencoded latex file, 3 figures, uses epsf and epsfig. Submitted to Mod. Phys. Lett.

    Integrating a QPSK Quantum Key Distribution Link

    Get PDF
    We present the integration of the optical and electronic subsystems of a BB84-QKD fiber link. A highspeed FPGA MODEM generates the random QPSK sequences for a fiber-optic delayed self-homodyne scheme using APD detectors.Comment: 2 pages, 4 figures, European Conference on Optical Communication 200

    Low redshift constraints on energy-momentum-powered gravity models

    Full text link
    There has been recent interest in the cosmological consequences of energy-momentum-powered gravity models, in which the matter side of Einstein's equations is modified by the addition of a term proportional to some power, nn, of the energy-momentum tensor, in addition to the canonical linear term. In this work we treat these models as phenomenological extensions of the standard Λ\LambdaCDM, containing both matter and a cosmological constant. We also quantitatively constrain the additional model parameters using low redshift background cosmology data that are specifically from Type Ia supernovas and Hubble parameter measurements. We start by studying specific cases of these models with fixed values of n,n, which lead to an analytic expression for the Friedmann equation; we discuss both their current constraints and how the models may be further constrained by future observations of Type Ia supernovas for WFIRST complemented by measurements of the redshift drift by the ELT. We then consider and constrain a more extended parameter space, allowing nn to be a free parameter and considering scenarios with and without a cosmological constant. These models do not solve the cosmological constant problem per se. Nonetheless these models can phenomenologically lead to a recent accelerating universe without a cosmological constant at the cost of having a preferred matter density of around ΩM∼0.4\Omega_M\sim0.4 instead of the usual ΩM∼0.3\Omega_M\sim0.3. Finally we also briefly constrain scenarios without a cosmological constant, where the single component has a constant equation of state which needs not be that of matter; we provide an illustrative comparison of this model with a more standard dynamical dark energy model with a constant equation of state.Comment: 13+2 pages, 12+1 figures; A&A (in press
    • …
    corecore