3,891 research outputs found
Magnetically-induced reconstructions of the ground state in a few-electron Si quantum dot
We report unexpected fluctuations in the positions of Coulomb blockade peaks
at high magnetic fields in a small Si quantum dot. The fluctuations have a
distinctive saw-tooth pattern: as a function of magnetic field, linear shifts
of peak positions are compensated by abrupt jumps in the opposite direction.
The linear shifts have large slopes, suggesting formation of the ground state
with a non-zero angular momentum. The value of the momentum is found to be well
defined, despite the absence of the rotational symmetry in the dot.Comment: 5 pages, 4 figures, accepted to PR
Double-dot charge transport in Si single electron/hole transistors
We studied transport through ultra-small Si quantum dot transistors
fabricated from silicon-on-insulator wafers. At high temperatures, 4K<T<100K,
the devices show single-electron or single-hole transport through the
lithographically defined dot. At T<4K, current through the devices is
characterized by multidot transport. From the analysis of the transport in
samples with double-dot characteristics, we conclude that extra dots are formed
inside the thermally grown gate oxide which surrounds the lithographically
defined dot.Comment: 4 pages, 5 figures, to appear in Appl. Phys. Let
Determination of the internal structure of neutron stars from gravitational wave spectra
In this paper the internal structure of a neutron star is shown to be
inferrable from its gravitational-wave spectrum. Iteratively applying the
inverse scheme of the scaled coordinate logarithmic perturbation method for
neutron stars proposed by Tsui and Leung [Astrophys. J. {\bf 631}, 495 (2005)],
we are able to determine the mass, the radius and the mass distribution of a
star from its quasi-normal mode frequencies of stellar pulsation. In addition,
accurate equation of state of nuclear matter can be obtained from such
inversion scheme. Explicit formulas for the case of axial -mode oscillation
are derived here and numerical results for neutron stars characterized by
different equations of state are shown.Comment: 26 pages, 14 figures, submitted to Physical Review
Tilt Induced Localization and Delocalization in the Second Landau Level
We have investigated the behavior of electronic phases of the second Landau
level under tilted magnetic fields. The fractional quantum Hall liquids at
2+1/5 and 2+4/5 and the solid phases at 2.30, 2.44, 2.57, and 2.70
are quickly destroyed with tilt. This behavior can be interpreted as a tilt
driven localization of the 2+1/5 and 2+4/5 fractional quantum Hall liquids and
a delocalization through melting of solid phases in the top Landau level,
respectively. The evolution towards the classical Hall gas of the solid phases
is suggestive of antiferromagnetic ordering
- …