22,679 research outputs found
Postcard: Holsinger Brothers Advertisement
This black and white photographic postcard features a house with landscaping and trees around the building. Printed text is at the bottom of the card. The back of the card depicts a photograph of a still life with Shasta daisies. Printed text is on the back of the card.https://scholars.fhsu.edu/tj_postcards/1797/thumbnail.jp
Attracted Diffusion-Limited Aggregation
In this paper, we present results of extensive Monte Carlo simulations of
diffusion-limited aggregation (DLA) with a seed placed on an attractive plane
as a simple model in connection with the electrical double layers. We compute
the fractal dimension of the aggregated patterns as a function of the
attraction strength \alpha. For the patterns grown in both two and three
dimensions, the fractal dimension shows a significant dependence on the
attraction strength for small values of \alpha, and approaches to that of the
ordinary two-dimensional (2D) DLA in the limit of large \alpha. For
non-attracting case with \alpha=1, our results in three dimensions reproduce
the patterns of 3D ordinary DLA, while in two dimensions our model leads to
formation of a compact cluster with dimension two. For intermediate \alpha, the
3D clusters have quasi-2D structure with a fractal dimension very close to that
of the ordinary 2D-DLA. This allows one to control morphology of a growing
cluster by tuning a single external parameter \alpha.Comment: 6 pages, 6 figures, to appear in Phys. Rev. E (2012
Factors associated with limited exercise capacity and feasibility of high intensity interval training in people with mild to moderate Parkinson's disease
Background/Aims: Fitness and function can improve with exercise in people with Parkinson's disease. Animal models suggest that exercise may also have a neuroprotective effect, with higher intensity exercise being more beneficial than lower intensity exercise. However, in people with Parkinson's disease the factors limiting exercise capacity are not fully understood and it is unclear whether training at very high intensities would be safe, feasible and acceptable. Methods: Eighteen people with Parkinson's disease were recruited to explore respiratory and neuromuscular factors that may limit exercise capacity. In a purposive subgroup of 6 participants able to achieve >75% of their predicted maximum heart rate the feasibility of undertaking six high intensity interval training sessions over 3 weeks was tested. Their experience was further explored in a focus group. Results: Lower exercise capacity was associated with lower limb flexor muscle strength (r2=0.51) but not with disease severity or respiratory function. There were no adverse events or drop-outs in those taking part in the exercise regimen. Improvements were seen in fitness, health related quality of life, activity levels, walking speed, muscle strength and cycle endurance. Participants reported that they enjoyed high intensity, supervised exercise. High intensity interval training may be feasible and safe. Conclusions: We concluded that high intensity interval training has the potential to be a safe and acceptable mode of exercise in this patient group. </jats:sec
Critical Casimir interaction of ellipsoidal colloids with a planar wall
Based on renormalization group concepts and explicit mean field calculations
we study the universal contribution to the effective force and torque acting on
an ellipsoidal colloidal particle which is dissolved in a critical fluid and is
close to a homogeneous planar substrate. At the same closest distance between
the substrate and the surface of the particle, the ellipsoidal particle prefers
an orientation parallel to the substrate and the magnitude of the fluctuation
induced force is larger than if the orientation of the particle is
perpendicular to the substrate. The sign of the critical torque acting on the
ellipsoidal particle depends on the type of boundary conditions for the order
parameter at the particle and substrate surfaces, and on the pivot with respect
to which the particle rotates
A general theory of DNA-mediated and other valence-limited interactions
We present a general theory for predicting the interaction potentials between
DNA-coated colloids, and more broadly, any particles that interact via
valence-limited ligand-receptor binding. Our theory correctly incorporates the
configurational and combinatorial entropic factors that play a key role in
valence-limited interactions. By rigorously enforcing self-consistency, it
achieves near-quantitative accuracy with respect to detailed Monte Carlo
calculations. With suitable approximations and in particular geometries, our
theory reduces to previous successful treatments, which are now united in a
common and extensible framework. We expect our tools to be useful to other
researchers investigating ligand-mediated interactions. A complete and
well-documented Python implementation is freely available at
http://github.com/patvarilly/DNACC .Comment: 18 pages, 10 figure
Piloting a manualised weight management programme (Shape Up-LD) for overweight and obese persons with mild-moderate learning disabilities: study protocol for a pilot randomised controlled trial
National obesity rates have dramatically risen over the last decade. Being obese significantly reduces life expectancy, increases the risk of a range of diseases, and compromises quality of life. Costs to both the National Health Service and society are high. An increased prevalence of obesity in people with learning disabilities has been demonstrated. The consequences of obesity are particularly relevant to people with learning disabilities who are already confronted by health and social inequalities. In order to provide healthcare for all, and ensure equality of treatment for people with learning disabilities, services must be developed specifically with this population in mind. The aim of this project is to pilot the evaluation of a manualised weight management programme for overweight and obese persons with mild-moderate learning disabilities (Shape Up-LD)
Kinetic Theory of Collisionless Self-Gravitating Gases: Post-Newtonian Polytropes
In this paper we study the kinetic theory of many-particle astrophysical
systems and we present a consistent version of the collisionless Boltzmann
equation in the 1PN approximation. We argue that the equation presented by
Rezania and Sobouti in A&A 354 1110 (2000) is not the correct expression to
describe the evolution of a collisionless self-gravitating gas. One of the
reasons that account for the previous statement is that the energy of a
free-falling test particle, obeying the 1PN equations of motion for static
gravitational fields, is not a static solution of the mentioned equation. The
same statement holds for the angular momentum, in the case of spherical
systems. We provide the necessary corrections and obtain an equation that is
consistent with the corresponding equations of motion and the 1PN conserved
quantities. We suggest some potential relevance for the study of high density
astrophysical systems and as an application we construct the corrected version
of the post-Newtonian polytropes.Comment: 23 pages, 24 figures. Accepted for publication in PR
Quality engineering of a traction alternator by robust design
Robust design is an engineering methodology for improving productivity during research and development so that high-quality products can be developed and produced quickly and at low cost. A large electrical company was developing traction alternators for a diesel electrical engine. Customer requirement was to obtain very high efficiency which, in turn, was influenced by several design parameters. The usual approach of the 'design-build-test' cycle was considered time-consuming and costly; it used to take anywhere from 4 months to 1 year before finalizing the product design parameters as it involved physical assembly and also testing. Instead, the authors used Taguchi's parameter design approach. This approach took about 8 weeks to arrive at optimum design parameter values; clearly demonstrating the cutting edge of this methodology over the traditional design-build-test approach. The prototype built and tested accordingly gave satisfactory overall performance, meeting and even exceeding customer requirements
Unstable Disk Galaxies. I. Modal Properties
I utilize the Petrov-Galerkin formulation and develop a new method for
solving the unsteady collisionless Boltzmann equation in both the linear and
nonlinear regimes. In the first order approximation, the method reduces to a
linear eigenvalue problem which is solved using standard numerical methods. I
apply the method to the dynamics of a model stellar disk which is embedded in
the field of a soft-centered logarithmic potential. The outcome is the full
spectrum of eigenfrequencies and their conjugate normal modes for prescribed
azimuthal wavenumbers. The results show that the fundamental bar mode is
isolated in the frequency space while spiral modes belong to discrete families
that bifurcate from the continuous family of van Kampen modes. The population
of spiral modes in the bifurcating family increases by cooling the disk and
declines by increasing the fraction of dark to luminous matter. It is shown
that the variety of unstable modes is controlled by the shape of the dark
matter density profile.Comment: Accepted for publication in The Astrophysical Journa
- …