5,661 research outputs found

    Light- and strange-quark mass dependence of the ρ(770)\rho(770) meson revisited

    Get PDF
    Recent lattice data on ππ\pi\pi-scattering phase shifts in the vector-isovector channel, pseudoscalar meson masses and decay constants for strange-quark masses smaller or equal to the physical value allow us to study the strangeness dependence of these observables for the first time. We perform a global analysis on two kind of lattice trajectories depending on whether the sum of quark masses or the strange-quark mass is kept fixed to the physical point. The quark mass dependence of these observables is extracted from unitarized coupled-channel one-loop Chiral Perturbation Theory. This analysis guides new predictions on the ρ(770)\rho(770) meson properties over trajectories where the strange-quark mass is lighter than the physical mass, as well as on the SU(3) symmetric line. As a result, the light- and strange-quark mass dependence of the ρ(770)\rho(770) meson parameters are discussed and precise values of the Low Energy Constants present in unitarized one-loop Chiral Perturbation Theory are given. Finally, the current discrepancy between two- and three-flavor lattice results for the ρ(770)\rho(770) meson is studied.Comment: 44 pages, 41 figures, 11 table

    Strange resonance poles from KπK\pi scattering below 1.8 GeV

    Get PDF
    In this work we present a determination of the mass, width and coupling of the resonances that appear in kaon-pion scattering below 1.8 GeV. These are: the much debated scalar κ\kappa-meson, nowdays known as K0(800)K_0^*(800), the scalar K0(1430)K_0^*(1430), the K(892)K^*(892) and K1(1410)K_1^*(1410) vectors, the spin-two K2(1430)K_2^*(1430) as well as the spin-three K3(1780)K^*_3(1780). The parameters will be determined from the pole associated to each resonance by means of an analytic continuation of the KπK\pi scattering amplitudes obtained in a recent and precise data analysis constrained with dispersion relations, which were not well satisfied in previous analyses. This analytic continuation will be performed by means of Pad\'e approximants, thus avoiding a particular model for the pole parameterization. We also pay particular attention to the evaluation of uncertainties.Comment: 13 pages, 12 figures. Accepted version to appear in Eur. Phys. J. C. Clarifications and references added, minor typos correcte
    corecore