20 research outputs found

    Work-related pesticide poisoning among farmers in two villages of Southern China: a cross-sectional survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pesticide poisoning is an important health problem among Chinese farm workers, but there is a paucity of pesticide poisoning data from China. Using the WHO standard case definition of a possible acute pesticide poisoning, we investigated the prevalence and risk factors of acute work-related pesticide poisoning among farmers in Southern China.</p> <p>Methods</p> <p>A stratified sample of 910 pesticide applicators from two villages in southern China participated in face-to-face interviews. Respondents who self-reported having two or more of a list of sixty-six symptoms within 24 hours after pesticide application were categorized as having suffered acute pesticide poisoning. The association between the composite behavioral risk score and pesticide poisoning were assessed in a multivariate logistic model.</p> <p>Results</p> <p>A total of 80 (8.8%) pesticide applicators reported an acute work-related pesticide poisoning. The most frequent symptoms among applicators were dermal (11.6%) and nervous system (10.7%) symptoms. Poisoning was more common among women, farmers in poor areas, and applicators without safety training (all p < 0.001). After controlling for gender, age, education, geographic area and the behavioral risk score, farmers without safety training had an adjusted odds ratio of 3.22 (95% CI: 1.86-5.60). The likelihood of acute pesticide poisoning was also significantly associated with number of exposure risk behaviors. A significant "dose-response" relationship between composite behavioral risk scores calculated from 9 pesticides exposure risk behaviors and the log odds of pesticide poisoning prevalence was seen among these Chinese farmers (R<sup>2 </sup>= 0.9246).</p> <p>Conclusions</p> <p>This study found that 8.8% of Chinese pesticide applicators suffered acute pesticide poisoning and suggests that pesticide safety training, safe application methods, and precautionary behavioral measures could be effective in reducing the risk of pesticide poisoning.</p

    Weekly Two-Stage Robust Generation Scheduling for Hydrothermal Power Systems

    No full text
    As compared to short-term forecasting (e.g., 1 day), it is often challenging to accurately forecast the volume of precipitation in a medium-term horizon (e.g., 1 week). As a result, fluctuations in water inflow can trigger generation shortage and electricity price spikes in a power system with major or predominant hydro resources. In this paper, we study a two-stage robust scheduling approach for a hydrothermal power system. We consider water inflow uncertainty and employ a vector autoregressive (VAR) model to represent its seasonality and accordingly construct an uncertainty set in the robust optimization approach. We design a Benders' decomposition algorithm to solve this problem. Results are presented for the proposed approach on a real-world case study.University of Arizona Renewable Energy Network; National Science Foundation (NSF) [60050502]; NSF [CMMI-1555983]; U.S. Department of Energy Office of Electricity Delivery and Energy ReliabilityThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Short-term diesel exhaust inhalation in a controlled human crossover study is associated with changes in DNA methylation of circulating mononuclear cells in asthmatics

    No full text
    Background: Changes in DNA methylation have been associated with traffic-related air pollution in observational studies, but the specific mechanisms and temporal dynamics therein have not been explored in a controlled study of asthmatics. In this study, we investigate short-term effects of diesel exhaust inhalation on DNA methylation levels at CpG sites across the genome in circulating blood in asthmatics. Methods A double-blind crossover study of filtered air and diesel exhaust exposures was performed on sixteen non-smoking asthmatic subjects. Blood samples were collected pre-exposure, and then 6 and 30Ā hours post-exposure. Peripheral blood mononuclear cell DNA methylation was interrogated using the Illumina Infinium HumanMethylation450 Array. Exposure-related changes in DNA methylation were identified. In addition, CpG sites overlapping with Alu or LINE1 repetitive elements and candidate microRNA loci were also analyzed. Results DNA methylation at 2827 CpG sites were affected by exposure to diesel exhaust but not filtered air; these sites enriched for genes involved in protein kinase and NFkB pathways. CpG sites with significant changes in response to diesel exhaust exposure primarily became less methylated, with a site residing within GSTP1 being among the significant hits. Diesel exhaust-associated change was also found for CpG sites overlapping with Alu and LINE1 elements as well as for a site within miR-21. Conclusion Short-term exposure to diesel exhaust resulted in DNA methylation changes at CpG sites residing in genes involved in inflammation and oxidative stress response, repetitive elements, and microRNA. This provides plausibility for the role of DNA methylation in pathways by which airborne particulate matter impacts gene expression and offers support for including DNA methylation analysis in future efforts to understand the interactions between environmental exposures and biological systems.Medicine, Department ofMolecular Medicine and Therapeutics, Centre forPopulation and Public Health (SPPH), School ofMedicine, Faculty ofNon UBCReviewedFacult

    Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity

    No full text
    corecore