4,507 research outputs found
Imaging of Hepatocellular Carcinoma by Computed Tomography and Magnetic Resonance Imaging: State of the Art
Hepatocellular carcinoma (HCC) is a very frequent tumor worldwide. Its incidence is linked to the distribution of liver cirrhosis and viral hepatitis, which are the main risk factors for the development of HCC. For the evaluation of the cirrhotic liver and for the diagnosis of HCC, multidetector computed tomography (MDCT) proved to be a robust and reliable tool. In MDCT the diagnosis of HCC can be made based on neovascularization with increased arterial and decreased portal venous supply. With modern magnetic resonance imaging (MRI), spatial resolution and robustness increased dramatically. Beside the evaluation of neovascularization by means of gadolinium-enhanced early dynamic MRI, the main advantages of MRI are additional information on tissue composition and liver-specific function. With diffusion-weighted imaging or plain T(1)- and T(2)-weighted sequences, different tissue elements like fat, hemorrhage, glycogen, edema and cellular density can be evaluated. Liver-specific contrast agents give insight into the Kupffer cell density or the hepatocellular function. The integration of all these parts into the MR examination allows for a very high detection rate for overt HCC nowadays, although very small HCCs are still a challenge. Moreover, insight into the different stages of hepatocarcinogenesis can be possible with MRI. Despite its limited availability in some countries, it has to be rendered to be the modality of choice for the distinct evaluation of the cirrhotic liver. Copyright (C) 2009 S. Karger AG, Base
Recommended from our members
The Content of Event Knowledge Structures
Autobiographical retrieval has been modeled as a predictive retrieval process, in which strategies elaborate the original retrieval cue relying on information accessed in knowledge structures to direct the search. Previous studies have demonstrated that event concepts differ in their utility in this process. The present study examines the type of information made available by accessing two such event concepts, activities and general actions. Activity structures are shown to enable more concrete predictions about included objects, people, and setting information, while general actions tend to be associated with internal mental states. These differences in available features are consistent with previously observed retrieval time differences between these types of concepts and support a general underlying mechanism of predictive inferencing in retrieval. The results suggest the types of information that computer models of memory organization should utilize in their representations of event structures and the reasoning mechanisms that depend on those structures
Simulation of an 1857-like Mw 7.9 San Andreas Fault Earthquake and the Response of Tall Steel Moment Frame Buildings in Southern California – A Prototype Study
In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing
in a southeasterly direction for more than 360 km. Such a unilateral rupture produces significant directivity
toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake
would have had significant long-period content (2-8 s), and the objective of this study is to quantify the impact
of such an earthquake on two 18-story steel moment frame building models, hypothetically located at 636 sites
on a 3.5 km grid in southern California. End-to-end simulations include modeling the source and rupture of a
fault at one end, numerically propagating the seismic waves through the earth structure, simulating the damage
to engineered structures and estimating the economic impact at the other end using high-performance computing.
In this prototype study, we use an inferred finite source model of the magnitude 7.9, 2002 Denali fault
earthquake in Alaska, and map it onto the San Andreas fault with the rupture originating at Parkfield and
propagating southward over a distance of 290 km. Using the spectral element seismic wave propagation code,
SPECFEM3D, we simulate an 1857-like earthquake on the San Andreas fault and compute ground motions at
the 636 analysis sites. Using the nonlinear structural analysis program, FRAME3D, we subsequently analyze
3-D structural models of an existing tall steel building designed using the 1982 Uniform Building Code (UBC),
as well as one designed according to the 1997 UBC, subjected to the computed ground motion at each of these
sites. We summarize the performance of these structural models on contour maps of peak interstory drift.
We then perform an economic loss analysis for the two buildings at each site, using the Matlab Damage and
Loss Analysis (MDLA) toolbox developed to implement the PEER loss-estimation methodology. The toolbox
includes damage prediction and repair cost estimation for structural and non-structural components and allows
for the computation of the mean and variance of building repair costs conditional on engineering demand
parameters (i.e. inter-story drift ratios and peak floor accelerations). Here, we modify it to treat steel-frame
high-rises, including aspects such as mechanical, electrical and plumbing systems, traction elevators, and the
possibility of irreparable structural damage. We then generate contour plots of conditional mean losses for the
San Fernando and the Los Angeles basins for the pre-Northridge and modern code-designed buildings, allowing
for comparison of the economic effects of the updated code for the scenario event. In principle, by simulating
multiple seismic events, consistent with the probabilistic seismic hazard for a building site, the same basic
approach could be used to quantify the uncertain losses from future earthquakes
Stability of the solutions of elliptic partial differential equations with general boundary conditions
Existence, uniqueness, stability, and asymptotic stability conditions for solution of elliptic partial differential equations with general boundary condition
Towards a unified linear kinetic transport model with the trace ion module for EIRENE
Linear kinetic Monte Carlo particle transport models are frequently employed
in fusion plasma simulations to quantify atomic and surface effects on the main
plasma flow dynamics. Separate codes are used for transport of neutral
particles (incl. radiation) and charged particles (trace impurity ions).
Integration of both modules into main plasma fluid solvers provides then self
consistent solutions, in principle. The required interfaces are far from
trivial, because rapid atomic processes in particular in the edge region of
fusion plasmas require either smoothing and resampling, or frequent transfer of
particles from one into the other Monte Carlo code. We propose a different
scheme here, in which despite the inherently different mathematical form of
kinetic equations for ions and neutrals (e.g. Fokker-Planck vs. Boltzmann
collision integrals) both types of particle orbits can be integrated into one
single code. We show that the approximations and shortcomings of this "single
sourcing" concept (e.g., restriction to explicit ion drift orbit integration)
can be fully tolerable in a wide range of typical fusion edge plasma
conditions, and be overcompensated by the code-system simplicity, as well as by
inherently ensured consistency in geometry (one single numerical grid only) and
(the common) atomic and surface process modulesComment: 15 pages, 7 figure
A generalization of the Perelman gluing theorem and applications
We prove a gluing result that allows to glue two Riemannian manifolds of
positive intermediate Ricci curvature along their boundaries, provided the
boundaries are isometric and the sum of second fundamental forms is positive
semi-definite. This holds in particular for positive sectional curvature and
generalizes a result of Perelman for positive Ricci curvature. As application
we derive a sufficient condition for the existence of a metric with positive
intermediate Ricci curvature and totally geodesic boundary, and obtain results
on the observer moduli space of metrics of positive intermediate Ricci
curvature on the sphere.Comment: 21 page
High-power operation of a K-band second harmonic gyroklystron
Amplification studies of a two-cavity second-harmonic gyroklystron are reported. A magnetron injection gun produces a 440 kV, 200–245 A, 1 μs beam with an average perpendicular-to-parallel velocity ratio slightly less than 1. The TE011 input cavity is driven near 9.88 GHz and the TE021 output cavity resonates near 19.76 GHz. Peak powers exceeding 21 MW are achieved with an efficiency near 21% and a large signal gain above 25 dB. This performance represents the current state of the art for gyroklystrons in terms of the peak power normalized to the output wavelength squared
Collagen biosynthesis.
Collagen is the major structural protein of the lung. At least five genetically distinct collagen types have been identified in lung tissue. However, the precise role of collagen in nonrespiratory lung function is not well understood, in part because of the difficulties inherent in studying lung collagen, regardless of the type of assay used. A major problem is the insolubility of lung collagen; generally less than 20% of total lung collagen can be solubilized as intact chains, even with harsh extraction procedures. Since such collagen may not be representative of total lung collagen, errors in quantitating collagen types, for example, may arise from using such material. Measurement of total lung collagen content may also pose problems, unless appropriate parameters of normalization are chosen. Biopsy dry weight, protein content, and DNA content, for example, may all change in certain disease states. Despite these difficulties, a number of changes in lung collagen have been documented in experimental pulmonary fibrosis, including increased collagen content, increased collagen synthesis rates, and changes in collagen type ratios. Many questions remain. For example, why do diverse toxic substances appear to cause essentially the same fibrotic response, even though initial sites of damage may vary? Conversely, why do similar toxic substances, such as ozone and NO2, cause diverse responses (fibrosis and emphysema, respectively)? Much work remains to be done to elucidate the mechanisms underlying the lung's choice of response
- …