84 research outputs found

    Diamond chemical vapor deposition on optical fibers for fluorescence waveguiding

    Full text link
    A technique has been developed for depositing diamond crystals on the endfaces of optical fibers and capturing the fluorescence generated by optically active defects in the diamond into the fiber. This letter details the diamond growth on optical fibers and transmission of fluorescence through the fiber from the nitrogen-vacancy (N-V) color center in diamond. Control of the concentration of defects incorporated during the chemical vapor deposition (CVD) growth process is also demonstrated. These are the first critical steps in developing a fiber coupled single photon source based on optically active defect centers in diamond.Comment: 10 pages, 3 figure

    The role of C2 in nanocrystalline diamond growth

    Full text link
    This paper presents findings from a study of nanocrystalline diamond (NCD) growth in a microwave plasma chemical vapour deposition (CVD) reactor. NCD films were grown using Ar/H2/CH4 and He/H2/CH4 gas compositions. The resulting films were characterised using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. Analysis revealed an estimated grain size of the order of 50 nm, growth rates in the range 0.01 to 0.3 um/h and sp3 and sp2 bonded carbon content consistent with that expected for NCD. The C2 Swan band was probed using cavity ring-down spectroscopy (CRDS) to measure the absolute C2 (a) number density in the plasma during diamond film growth. The number density in the Ar/H2/CH4 plasmas was in the range 2 to 4 x 10^12 cm-3, but found to be present in quantities too low to measure in the He/H2/CH4 plasmas. Optical emission spectrometry (OES) was employed to determine the relative densities of the C2 excited state (d) in the plasma. The fact that similar NCD material was grown whether using Ar or He as the carrier gas suggests that C2 does not play a major role in the growth of nanocrystalline diamond.Comment: 39 pages, 11 figure

    Room temperature triggered single-photon source in the near infrared

    Full text link
    We report the realization of a solid-state triggered single-photon source with narrow emission in the near infrared at room temperature. It is based on the photoluminescence of a single nickel-nitrogen NE8 colour centre in a chemical vapour deposited diamond nanocrystal. Stable single-photon emission has been observed in the photoluminescence under both continuous-wave and pulsed excitations. The realization of this source represents a step forward in the application of diamond-based single-photon sources to Quantum Key Distribution (QKD) under practical operating conditions.Comment: 10 page

    Implantation of labelled single nitrogen vacancy centers in diamond using 15N

    Full text link
    Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spectrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.Comment: 14 pages, 3 figures, to appear in Applied Physics Letter

    Single photon quantum non-demolition in the presence of inhomogeneous broadening

    Get PDF
    Electromagnetically induced transparency (EIT) has been often proposed for generating nonlinear optical effects at the single photon level; in particular, as a means to effect a quantum non-demolition measurement of a single photon field. Previous treatments have usually considered homogeneously broadened samples, but realisations in any medium will have to contend with inhomogeneous broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys. Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an alternative mode of operation that is preferred in an inhomogeneous environment. We further show the implications of these results on a potential implementation in diamond containing nitrogen-vacancy colour centres. Our modelling shows that single mode waveguide structures of length 200μm200 \mu\mathrm{m} in single-crystal diamond containing a dilute ensemble of NV^- of only 200 centres are sufficient for quantum non-demolition measurements using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv purpose

    Stark shift control of single optical centers in diamond

    Get PDF
    Lifetime limited optical excitation lines of single nitrogen vacancy (NV) defect centers in diamond have been observed at liquid helium temperature. They display unprecedented spectral stability over many seconds and excitation cycles. Spectral tuning of the spin selective optical resonances was performed via the application of an external electric field (i.e. the Stark shift). A rich variety of Stark shifts were observed including linear as well as quadratic components. The ability to tune the excitation lines of single NV centers has potential applications in quantum information processing

    High-sensitivity diamond magnetometer with nanoscale resolution

    Full text link
    We present a novel approach to the detection of weak magnetic fields that takes advantage of recently developed techniques for the coherent control of solid-state electron spin quantum bits. Specifically, we investigate a magnetic sensor based on Nitrogen-Vacancy centers in room-temperature diamond. We discuss two important applications of this technique: a nanoscale magnetometer that could potentially detect precession of single nuclear spins and an optical magnetic field imager combining spatial resolution ranging from micrometers to millimeters with a sensitivity approaching few femtotesla/Hz1/2^{1/2}.Comment: 29 pages, 4 figure

    Enhanced spontaneous emission from nanodiamond colour centres on opal photonic crystal

    Full text link
    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for developing efficient single photon sources with high collection efficiency. A number of groups have produced enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. Here we characterise in detail the spontaneous emission rates of nitrogen-vacancy centres positioned in various locations on a structured substrate. We show an average factor of 1.5 enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observe changes in the lifetime distribution. We present a model to explain these observations and associate the lifetime properties with dipole orientation and polarization effects.Comment: 16 pages, 10 figure

    Scalable quantum register based on coupled electron spins in a room temperature solid

    Full text link
    Realization of devices based on quantum laws might lead to building processors that outperform their classical analogues and establishing unconditionally secure communication protocols. Solids do usually present a serious challenge to quantum coherence. However, owing to their spin-free lattice and low spin orbit coupling, carbon materials and particularly diamond are suitable for hosting robust solid state quantum registers. We show that scalable quantum logic elements can be realized by exploring long range magnetic dipolar coupling between individually addressable single electron spins associated with separate color centers in diamond. Strong distance dependence of coupling was used to characterize the separation of single qubits 98 A with unprecedented accuracy (3 A) close to a crystal lattice spacing. Our demonstration of coherent control over both electron spins, conditional dynamics, selective readout as well as switchable interaction, opens the way towards a room temperature solid state scalable quantum register. Since both electron spins are optically addressable, this solid state quantum device operating at ambient conditions provides a degree of control that is currently available only for atomic systems.Comment: original submitted version of the manuscrip
    corecore