59 research outputs found
Catechol-O-Methyltransferase Val158Met Polymorphism Associates with Individual Differences in Sleep Physiologic Responses to Chronic Sleep Loss
Val158Met polymorphism was a novel marker in healthy adults of differential vulnerability to chronic partial sleep deprivation (PSD), a condition distinct from total sleep loss and one experienced by millions on a daily and persistent basis. allelic frequencies were higher in whites than African Americans.-related treatment responses and risk factors for symptom exacerbation
Differences in pre-sleep activity and sleep location are associated with variability in daytime/nighttime sleep electrophysiology in the domestic dog
The domestic dog (Canis familiaris) is a promising animal model. Yet, the canine neuroscience literature is predominantly comprised of studies wherein (semi-)invasive methods and intensive training are used to study awake dog behavior. Given prior findings with humans and/or dogs, our goal was to assess, in 16 family dogs (1.5â7 years old; 10 males; 10 different breeds) the effects of pre-sleep activity and timing and location of sleep on sleep electrophysiology. All three factors had a main and/or interactive effect on sleep macrostructure. Following an active day, dogs slept more, were more likely to have an earlier drowsiness and NREM, and spent less time in drowsiness and more time in NREM and REM. Activity also had location- and time of day-specific effects. Time of day had main effects; at nighttime, dogs slept more and spent less time in drowsiness and awake after first drowsiness, and more time in NREM and in REM. Location had a main effect; when not at home, REM sleep following a first NREM was less likely. Findings are consistent with and extend prior human and dog data and have implications for the dog as an animal model and for informing future comparative research on sleep
Superior Inhibitory Control and Resistance to Mental Fatigue in Professional Road Cyclists
Purpose: Given the important role of the brain in regulating endurance performance, this comparative study sought to determine whether professional road cyclists have superior inhibitory control and resistance to mental fatigue compared to recreational road cyclists. Methods: After preliminary testing and familiarization, eleven professional and nine recreational road cyclists visited the lab on two occasions to complete a modified incongruent colour-word Stroop task (a cognitive task requiring inhibitory control) for 30 min (mental exertion condition), or an easy cognitive task for 10 min (control condition) in a randomized, counterbalanced cross-over order. After each cognitive task, participants completed a 20-min time trial on a cycle ergometer. During the time trial, heart rate, blood lactate concentration, and rating of perceived exertion (RPE) were recorded. Results: The professional cyclists completed more correct responses during the Stroop task than the recreational cyclists (705±68 vs 576±74, p = 0.001). During the time trial, the recreational cyclists produced a lower mean power output in the mental exertion condition compared to the control condition (216±33 vs 226±25 W, p = 0.014). There was no difference between conditions for the professional cyclists (323±42 vs 326±35 W, p = 0.502). Heart rate, blood lactate concentration, and RPE were not significantly different between the mental exertion and control conditions in both groups. Conclusion: The professional cyclists exhibited superior performance during the Stroop task which is indicative of stronger inhibitory control than the recreational cyclists. The professional cyclists also displayed a greater resistance to the negative effects of mental fatigue as demonstrated by no significant differences in perception of effort and time trial performance between the mental exertion and control conditions. These findings suggest that inhibitory control and resistance to mental fatigue may contribute to successful road cycling performance. These psychobiological characteristics may be either genetic and/or developed through the training and lifestyle of professional road cyclists
Pulsed radio frequency radiation affects cognitive performance and the waking electroencephalogram
We investigated the effects of radio frequency electromagnetic fields on brain physiology. Twenty-four healthy young men were exposed for 30 min to pulse-modulated or continuous-wave radio frequency electromagnetic fields (900 MHz; peak specific absorption rate 1 W/kg), or sham exposed. During exposure, participants performed cognitive tasks. Waking electroencephalogram was recorded during baseline, immediately after, and 30 and 60 min after exposure. Pulse-modulated radio frequency electromagnetic field exposure reduced reaction speed and increased accuracy in a working-memory task. It also increased spectral power in the waking electroencephalogram in the 10.5-11 Hz range 30 min after exposure. No effects were observed for continuous-wave radio frequency electromagnetic fields. These findings provide further evidence for a nonthermal biological effect of pulsed radio frequency electromagnetic fields
Sleep and rest facilitate auditory learning.
Sleep is superior to waking for promoting performance improvements between sessions of visual perceptual and motor learning tasks. Few studies have investigated possible effects of sleep on auditory learning. A key issue is whether sleep specifically promotes learning, or whether restful waking yields similar benefits. According to the "interference hypothesis," sleep facilitates learning because it prevents interference from ongoing sensory input, learning and other cognitive activities that normally occur during waking. We tested this hypothesis by comparing effects of sleep, busy waking (watching a film) and restful waking (lying in the dark) on auditory tone sequence learning. Consistent with recent findings for human language learning, we found that compared with busy waking, sleep between sessions of auditory tone sequence learning enhanced performance improvements. Restful waking provided similar benefits, as predicted based on the interference hypothesis. These findings indicate that physiological, behavioral and environmental conditions that accompany restful waking are sufficient to facilitate learning and may contribute to the facilitation of learning that occurs during sleep
- âŠ