740 research outputs found

    Direct Rivaroxaban-Induced Factor Xa Inhibition Proves to be Cardioprotective in Rats

    Get PDF
    BACKGROUND: Acute myocardial infarction is a leading cause of death worldwide. Though highly beneficial, reperfusion of myocardium is associated with reperfusion injury. While indirect inhibition of Factor Xa has been shown to attenuate myocardial ischemia-reperfusion (I/R) injury, the underlying mechanism remains unclear. Our study sought to evaluate the effect of rivaroxaban (RIV), a direct inhibitor of Factor Xa, on myocardial I/R injury and determine its cellular targets. EXPERIMENTAL APPROACH: We used a rat model of 40-minutes coronary ligation followed by reperfusion. RIV (3 mg/Kg) was given per os 1 hour before reperfusion. Infarct size and myocardial proteic expression of survival pathways were assessed at 120 and 30 minutes of reperfusion, respectively. Plasmatic levels of P-selectin and von Willebrand factor were measured at 60 minutes of reperfusion. Cellular RIV effects were assessed using hypoxia-reoxygenation (H/R) models on human umbilical vein endothelial cells and on rat cardiomyoblasts (H9c2 cell line). KEY RESULTS: RIV decreased infarct size by 21% (42.9% vs. 54.2% in RIV-treated rats and controls respectively, p < 0.05) at blood concentrations similar to human therapeutic (387.7 ± 152.3 ng/mL) levels. RIV had no effect on H/R-induced modulation of endothelial phenotype, nor did it alter myocardial activation of RISK and SAFE pathways at 30 min after reperfusion. However, RIV exerted a cytoprotective effect on H9c2 cells submitted to H/R. CONCLUSION: RIV decreased myocardial I/R injury in rats at concentrations similar to human therapeutic ones. This protection was not associated with endothelial phenotype modulation but rather with potential direct cytoprotection on cardiomyocytes

    Grandes branquiópodos (Crustacea: Branchiopoda: Anostraca, Notostraca) en la provincia de Málaga (España) (año hidrológico 2012/2013)

    Get PDF
    Grans branquiòpodes (Crustacea, Branchiopoda: Anostraca, Notostraca) a la província de Màlaga, Espanya (any hidrològic 2012/2013) S'enumeren les cites d'una campanya de mostratge de grans branquiòpodes portada a terme a la província de Màlaga (Andalusia, sud d'Espanya) que ha permès la detecció de cinc espècies (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. i Phallocryptus spinosa) en 90 masses d'aigua mostrejades.Large branchiopods (Crustacea, Branchiopoda, Anostraca, Notostraca) from Málaga province, Spain (2012/2013 hydrological year) This paper presents the occurrence of the large branchiopods detected during a survey carried out in the province of Málaga (Andalusia, southern Spain). Five species (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. and Phallocryptus spinosa) were recorded at 90 sampled wetlands.Se enumeran las citas de una campaña de muestreo de grandes branquiópodos realizada en la provincia de Málaga (Andalucía, sur de España) que ha permitido la detección de cinco especies (Branchipus cortesi, Chirocephalus diaphanus, Streptocephalus torvicornis, Triops mauritanicus aggr. y Phallocryptus spinosa) en 90 masas de agua muestreadas

    Estrogen-related receptor α and PGC-1-related coactivator constitute a novel complex mediating the biogenesis of functional mitochondria

    Get PDF
    Mitochondrial biogenesis, which depends on nuclear as well as mitochondrial genes, occurs in response to increased cellular ATP demand. The nuclear transcriptional factors, estrogen-related receptor α (ERRα) and nuclear respiratory factors 1 and 2, are associated with the coordination of the transcriptional machinery governing mitochondrial biogenesis, whereas coactivators of the peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family serve as mediators between the environment and this machinery. In the context of proliferating cells, PGC-1-related coactivator (PRC) is a member of the PGC-1 family, which is known to act in partnership with nuclear respiratory factors, but no functional interference between PRC and ERRα has been described so far. We explored three thyroid cell lines, FTC-133, XTC.UC1 and RO 82 W-1, each characterized by a different mitochondrial content, and studied their behavior towards PRC and ERRα in terms of respiratory efficiency. Overexpression of PRC and ERRα led to increased respiratory chain capacity and mitochondrial mass. The inhibition of ERRα decreased cell growth and respiratory chain capacity in all three cell lines. However, the inhibition of PRC and ERRα produced a greater effect in the oxidative cell model, decreasing the mitochondrial mass and the phosphorylating respiration, whereas the nonphosphorylating respiration remained unchanged. We therefore hypothesize that the ERRα–PRC complex plays a role in arresting the cell cycle through the regulation of oxidative phosphorylation in oxidative cells, and through some other pathway in glycolytic cells

    RISK and SAFE signaling pathway interactions in remote limb ischemic perconditioning in combination with local ischemic postconditioning

    Get PDF
    Local ischemic postconditioning (IPost) and remote ischemic perconditioning (RIPer) are promising methods to decrease ischemia–reperfusion (I/R) injury. We tested whether the use of the two procedures in combination led to an improvement in cardioprotection through a higher activation of survival signaling pathways. Rats exposed to myocardial I/R were allocated to one of the following four groups: Control, no intervention at myocardial reperfusion; IPost, three cycles of 10-s coronary artery occlusion followed by 10-s reperfusion applied at the onset of myocardial reperfusion; RIPer, 10-min limb ischemia followed by 10-min reperfusion initiated 20 min after coronary artery occlusion; IPost+RIPer, IPost and RIPer in combination. Infarct size was significantly reduced in both IPost and RIPer (34.25 ± 3.36 and 24.69 ± 6.02%, respectively) groups compared to Control (54.93 ± 6.46%, both p < 0.05). IPost+RIPer (infarct size = 18.04 ± 4.86%) was significantly more cardioprotective than IPost alone (p < 0.05). RISK pathway (Akt, ERK1/2, and GSK-3β) activation was enhanced in IPost, RIPer, and IPost+RIPer groups compared to Control. IPost+RIPer did not enhance RISK pathway activation as compared to IPost alone, but instead increased phospho-STAT-3 levels, highlighting the crucial role of the SAFE pathway. In IPost+RIPer, a SAFE inhibitor (AG490) abolished cardioprotection and blocked both Akt and GSK-3β phosphorylations, whereas RISK inhibitors (wortmannin or U0126) abolished cardioprotection and blocked STAT-3 phosphorylation. In our experimental model, the combination of IPost and RIPer improved cardioprotection through the recruitment of the SAFE pathway. Our findings also indicate that cross talk exists between the RISK and SAFE pathways

    Microparticle release in remote ischemic conditioning mechanism

    Get PDF
    Remote ischemic conditioning (RCond) induced by short periods of ischemia and reperfusion of an organ or tissue before myocardial reperfusion is an attractive strategy of cardioprotection in the context of acute myocardial infarction. Nonetheless, its mechanism remains unknown. A humoral factor appears to be involved, although its identity is currently unknown. We hypothesized that the circulating microparticles (MPs) are the link between the remote tissue and the heart. MPs from rats and healthy humans undergoing RCond were characterized. In rats, RCond was induced by 10 min of limb ischemia. In humans, RCond was induced by three cycles of 5-min inflation and 5-min deflation of a blood-pressure cuff. In the second part of the study, rats underwent 40 min myocardial ischemia followed by 2 h reperfusion. Infarct size was measured and compared among three groups of rats: 1) myocardial infarction alone (MI) (n = 6); 2) MI + RCond started 20 min after coronary ligation (n = 6); and 3) MI + injection of RCond-derived rat MPs (MI + MPs) (n = 5). MPs from endothelial cells (CD54(+) and CD146(+) for rats and humans, respectively) and procoagulant MPs (Annexin V(+)) markedly increased after RCond, both in rats and humans. RCond reduced infarct size (24.4 ± 5.9% in MI + RCond vs. 54.6 ± 4.7% in MI alone; P < 0.01). Infarct size did not decrease in MI + MPs compared with MI alone (50.2 ± 6.4% vs. 54.6 ± 4.7%, not significantly different). RCond increased endothelium-derived and procoagulant MPs in both rats and humans. However, MP release did not appear to be a biological vector of RCond in our model

    Animal welfare implications of surgical castration and its alternatives in pigs

    Get PDF
    This paper constitutes a review on the welfare aspects of piglet castration that considers the scientific literature published after 2004. Castrating during the neonatal period (1 to 3 days of age) is clearly painful. In addition, inflammatory processes may take place at the sites of incision, thus adding further pain to the procedure. Surgical castration with general and local anaesthesia, in combination with long-term analgesia, has been shown to reduce pain but the additional handling and injection of the anaesthetic, the effectiveness and limited safety margins have to be thoroughly evaluated. Raising entire males during the whole fattening period or immunocastration of males towards the end of the fattening period are other alternatives with welfare benefits in young pigs compared to current surgical castration, but with some potential welfare drawbacks regarding handling stress and behaviour during fattening. Based on the current knowledge, it can be concluded that sperm sexing and raising entire males after genetic control of boar taint are potentially preferable alternatives to current practices, but need further research, as these methods are not yet availabl

    Reliability of the CARE rule and the HEART score to rule out an acute coronary syndrome in non-traumatic chest pain patients

    Get PDF
    In patients consulting in the Emergency Department for chest pain, a HEART score ≤ 3 has been shown to rule out an acute coronary syndrome (ACS) with a low risk of major adverse cardiac event (MACE) occurrence. A negative CARE rule (≤ 1) that stands for the first four elements of the HEART score may have similar rule-out reliability without troponin assay requirement. We aim to prospectively assess the performance of the CARE rule and of the HEART score to predict MACE in a chest pain population. Prospective two-center non-interventional study. Patients admitted to the ED for non-traumatic chest pain were included, and followed-up at 6 weeks. The main study endpoint was the 6-week rate of MACE (myocardial infarction, coronary angioplasty, coronary bypass, and sudden unexplained death). 641 patients were included, of whom 9.5% presented a MACE at 6 weeks. The CARE rule was negative for 31.2% of patients, and none presented a MACE during follow-up [0, 95% confidence interval: (0.0–1.9)]. The HEART score was ≤ 3 for 63.0% of patients, and none presented a MACE during follow-up [0% (0.0–0.9)]. With an incidence below 2% in the negative group, the CARE rule seemed able to safely rule out a MACE without any biological test for one-third of patients with chest pain and the HEART score for another third with a single troponin assay

    Minimising pain in farm animals: the 3S approach - ‘Suppress, Substitute, Soothe'

    Get PDF
    Recently, the French National Institute for Agricultural Research appointed an expert committee to review the issue of pain in food-producing farm animals. To minimise pain, the authors developed a ‘3S' approach accounting for ‘Suppress, Substitute and Soothe' by analogy with the ‘3Rs' approach of ‘Reduction, Refinement and Replacement' applied in the context of animal experimentation. Thus, when addressing the matter of pain, the following steps and solutions could be assessed, in the light of their feasibility (technical constraints, logistics and regulations), acceptability (societal and financial aspects) and availability. The first solution is to suppress any source of pain that brings no obvious advantage to the animals or the producers, as well as sources of pain for which potential benefits are largely exceeded by the negative effects. For instance, tail docking of cattle has recently been eliminated. Genetic selection on the basis of resistance criteria (as e.g. for lameness in cattle and poultry) or reduction of undesirable traits (e.g. boar taint in pigs) may also reduce painful conditions or procedures. The second solution is to substitute a technique causing pain by another less-painful method. For example, if dehorning cattle is unavoidable, it is preferable to perform it at a very young age, cauterising the horn bud. Animal management and constraint systems should be designed to reduce the risk for injury and bruising. Lastly, in situations where pain is known to be present, because of animal management procedures such as dehorning or castration, or because of pathology, for example lameness, systemic or local pharmacological treatments should be used to soothe pain. These treatments should take into account the duration of pain, which, in the case of some management procedures or diseases, may persist for longer periods. The administration of pain medication may require the intervention of veterinarians, but exemptions exist where breeders are allowed to use local anaesthesia (e.g. castration and dehorning in Switzerland). Extension of such exemptions, national or European legislation on pain management, or the introduction of animal welfare codes by retailers into their meat products may help further developments. In addition, veterinarians and farmers should be given the necessary tools and information to take into account animal pain in their management decision

    Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid <it>Acyrthosiphon pisum</it>.</p> <p>Results</p> <p>The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the <it>N</it>-β-alanyldopamine pathway and desclerotization. In <it>Drosophila</it>, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids.</p> <p>Conclusion</p> <p>This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.</p
    • …
    corecore