21 research outputs found

    Targeting of the Plzf gene in the rat by transcription activator-like effector nuclease results in caudal regression syndrome in spontaneously hypertensive rats

    Get PDF
    Recently, it has been found that spontaneous mutation Lx (polydactyly-luxate syndrome) in the rat is determined by deletion of a conserved intronic sequence of the Plzf (Promyelocytic leukemia zinc finger protein) gene. In addition, Plzf is a prominent candidate gene for quantitative trait loci (QTLs) associated with cardiac hypertrophy and fibrosis in the spontaneously hypertensive rat (SHR). In the current study, we tested the effects of Plzf gene targeting in the SHR using TALENs (transcription activator-like effector nucleases). SHR ova were microinjected with constructs pTAL438/439 coding for a sequence-specific endonuclease that binds to target sequence in the first coding exon of the Plzf gene. Out of 43 animals born after microinjection, we detected a single male founder. Sequence analysis revealed a deletion of G that resulted in frame shift mutation starting in codon 31 and causing a premature stop codon at position of amino acid 58. The Plzftm1Ipcv allele is semi-lethal since approximately 95% of newborn homozygous animals died perinatally. All homozygous animals exhibited manifestations of a caudal regression syndrome including tail anomalies and serious size reduction and deformities of long bones, and oligo- or polydactyly on the hindlimbs. The heterozygous animals only exhibited the tail anomalies. Impaired development of the urinary tract was also revealed: one homozygous and one heterozygous rat exhibited a vesico-ureteric reflux with enormous dilatation of ureters and renal pelvis. In the homozygote, this was combined with a hypoplastic kidney. These results provide evidence for the important role of Plzf gene during development of the caudal part of a body-column vertebrae, hindlimbs and urinary system in the rat

    Distinct Impacts of Eda and Edar Loss of Function on the Mouse Dentition

    Get PDF
    The Eda-A1-Edar signaling pathway is involved in the development of organs with an ectodermal origin, including teeth. In mouse, mutants are known for both the ligand, Eda-A1 (Tabby), and the receptor, Edar (Downless). The adult dentitions of these two mutants have classically been considered to be similar. However, previous studies mentioned differences in embryonic dental development between EdaTa and Edardl-J mutants. A detailed study of tooth morphology in mutants bearing losses of functions of these two genes thus appears necessary to test the pattern variability induced by the developmental modifications. 3D-reconstructions of the cheek teeth have been performed at the ESRF (Grenoble, France) by X-ray synchrotron microtomography to assess dental morphology. The morphological variability observed in EdaTa and Edardl-J mutants have then been compared in detail. Despite patchy similarities, our detailed work on cheek teeth in EdaTa and Edardl-J mice show that all dental morphotypes defined in Edardl-J mice resolutely differ from those of EdaTa mice. This study reveals that losses of function of Eda and Edar have distinct impacts on the tooth size and morphology, contrary to what has previously been thought. The results indicate that unknown mechanisms of the Eda pathway are implicated in tooth morphogenesis. Three hypotheses could explain our results; an unexpected role of the Xedar pathway (which is influenced by the Eda gene product but not that of Edar), a more complex connection than has been appreciated between Edar and another protein, or a ligand-independent activity for Edar. Further work is necessary to test these hypotheses and improve our understanding of the mechanisms of development

    Specifics of management of enterprise innovation activities in the Czech Republic – the decision-making mechanism

    No full text
    The majority of Czech managers are aware that the long-term competitiveness of the company depends primarily on the use of innovative technical solutions and investments in new technologies. Despite awareness of the importance of innovation, many companies do not know how to manage, implement, and evaluate them. Empirical research showed that most innovation firms implement, but do not systematically manage the implementation of innovative projects and the allocation of funds. There is a contradiction between companies' ability to orientate themselves in the approaches available in the area of innovation management and the existence of a large number of approaches that can be used to address a particular type of innovation problem. A set of innovation concepts has been created to solve those challenges. Practical steps of the decision-making mechanism for selecting innovation concepts have been proposed. The decision-making mechanism is based on the analytic hierarchy process (AHP) and serves primarily for managers of medium and large enterprises
    corecore