27 research outputs found

    Zero temperature phase diagram of the square-shoulder system

    Full text link
    Particles that interact via a square-shoulder potential, consisting of an impenetrable hard core with an adjacent, repulsive, step-like corona, are able to self-organize in a surprisingly rich variety of rather unconventional ordered structures. Using optimization strategies that are based on ideas of genetic algorithms we encounter, as we systematically increase the pressure, the following archetypes of aggregates: low-symmetry cluster and columnar phases, followed by lamellar particle arrangements, until at high pressure values compact, high-symmetry lattices emerge. These structures are characterized in the NPT ensemble as configurations of minimum Gibbs free energy. Based on simple considerations, i.e., basically minimizing the number of overlapping coronae while maximizing at the same time the density, the sequence of emerging structures can easily be understood.Comment: Submitted to J. Chem. Phy

    Liquid-vapor transition of systems with mean field universality class

    Full text link
    We have considered a system where the interaction, v(r) = v_IS(r) + xi^2 v_MF(r), is given as a linear combination of two potentials, each of which being characterized with a well-defined critical behavior: for v_IS(r) we have chosen the potential of the restricted primitive model which is known to belong to the Ising 3D (IS) universality class, while for v_MF(r) we have considered a long-range interaction in the Kac-limit, displaying mean field (MF) behavior. We study the performance of two theoretical approaches and of computer simulations in the critical region for this particular system and give a detailed comparison between theories and simulation of the critical region and the location of the critical point. Both, theory and simulation give evidence that the system belongs to the MF universality class for any positive value of xi and that it shows only non-classical behavior for xi=0. While in this limiting case theoretical approaches are known to fail, we find good agreement for the critical properties between the theoretical approaches and the simulations for xi^2 larger than 0.05.Comment: 9 pages, 11 figures, 3 table

    Lane-formation vs. cluster-formation in two dimensional square-shoulder systems: A genetic algorithm approach

    Full text link
    Introducing genetic algorithms as a reliable and efficient tool to find ordered equilibrium structures, we predict minimum energy configurations of the square shoulder system for different values of corona width λ\lambda. Varying systematically the pressure for different values of λ\lambda we obtain complete sequences of minimum energy configurations which provide a deeper understanding of the system's strategies to arrange particles in an energetically optimized fashion, leading to the competing self-assembly scenarios of cluster-formation vs. lane-formation.Comment: 5 pages, 6 figure

    Editorial: Videos in der (Hochschul-)Lehre

    Get PDF
    24.04.2014 | Thomas Antretter, Johannes Dorfinger, Martin Ebner, Michael Kopp, Walther Nagler, Jutta Pauschenwein, Michael Raunig, Manfred Rechberger, Herwig Rehatschek, Patrick Schweighofer, Reinhard Staber & Martin Teufel (Graz

    Amplitude systems for spin-1/2 particles

    No full text
    The properties of various amplitude systems used to describe reactions involving spin-1/2 particles are described, the systems compared, and the transformation matrices among them tabulated.On discute les propriétés de différents systèmes d'amplitudes qui sont utilisés pour la description des réactions entre particules de spin 1/2. On compare les différentes représentations et on présente les transformations entre les différents ensembles sous forme de matrices
    corecore