522 research outputs found
Interplay of Kondo effect and strong spin-orbit coupling in multi-hole ultraclean carbon nanotubes
We report on cotunneling spectroscopy magnetoconductance measurements of
multi-hole ultraclean carbon nanotube quantum dots in the SU(4) Kondo regime
with strong spin-orbit coupling. Successive shells show a gradual weakening of
the Kondo effect with respect to the spin-orbital splittings, leading to an
evolution from SU(4) to SU(2) symmetry with a suppressed conductance at half
shell filling. The extracted energy level spectrum, overally consistent with
negligible disorder in the nanotube, shows in the half filled case large
renormalizations due to Coulombian effects.Comment: 5 pages, 4 figures, 1 supplementary fil
Gate-tuned high frequency response of carbon nanotube Josephson junctions
Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit
exhibit superconducting switching currents which can be controlled with a gate
electrode. Shapiro voltage steps can be observed under radiofrequency current
excitations, with a damping of the phase dynamics that strongly depends on the
gate voltage. These measurements are described by a standard RCSJ model showing
that the switching currents from the superconducting to the normal state are
close to the critical current of the junction. The effective dynamical
capacitance of the nanotube junction is found to be strongly gate-dependent,
suggesting a diffusive contact of the nanotube.Comment: 14 pages, 8 figure
Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe
High-resolution angle-resolved photoemission (ARPES) data show that a
metal-insulator Mott transition occurs at the surface of the quasi-two
dimensional compound TaSe. The transition is driven by the narrowing of the
Ta band induced by a temperature-dependent modulation of the atomic
positions. A dynamical mean-field theory calculation of the spectral function
of the half-filled Hubbard model captures the main qualitative feature of the
data, namely the rapid transfer of spectral weight from the observed
quasiparticle peak at the Fermi surface to the Hubbard bands, as the
correlation gap opens up.Comment: 4 pages, 4 figures; one modified figure, added referenc
A Mammalian Mediator Subunit that Shares Properties with Saccharomyces cerevisiae Mediator Subunit Cse2
The multiprotein Mediator complex is a coactivator required for activation of RNA polymerase II transcription by DNA bound transcription factors. We previously identified and partially purified a mammalian Mediator complex from rat liver nuclei (Brower, C.S., Sato, S., Tomomori-Sato, C., Kamura, T., Pause, A., Stearman, R., Klausner, R.D., Malik, S., Lane, W.S., Sorokina, I., Roeder, R.G., Conaway, J.W., and Conaway, R.C. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 10353-10358). Analysis by tandem mass spectrometry of proteins present in the most highly purified rat Mediator fractions led to the identification of a collection of new mammalian Mediator subunits, as well as several potential Mediator subunits including a previously uncharacterized protein encoded by the FLJ10193open reading frame. In this study, we present direct biochemical evidence that the FLJ10193protein, which we designate Med25, is a bona fide subunit of the mammalian Mediator complex. In addition, we present evidence that Med25 shares structural and functional properties with Saccharomyces cerevisiae Mediator subunit Cse2 and may be a mammalian Cse2 ortholog. Taken together, our findings identify a novel mammalian Mediator subunit and shed new light on the architecture of the mammalian Mediator complex
Nonparametric instrumental regression with non-convex constraints
This paper considers the nonparametric regression model with an additive
error that is dependent on the explanatory variables. As is common in empirical
studies in epidemiology and economics, it also supposes that valid instrumental
variables are observed. A classical example in microeconomics considers the
consumer demand function as a function of the price of goods and the income,
both variables often considered as endogenous. In this framework, the economic
theory also imposes shape restrictions on the demand function, like
integrability conditions. Motivated by this illustration in microeconomics, we
study an estimator of a nonparametric constrained regression function using
instrumental variables by means of Tikhonov regularization. We derive rates of
convergence for the regularized model both in a deterministic and stochastic
setting under the assumption that the true regression function satisfies a
projected source condition including, because of the non-convexity of the
imposed constraints, an additional smallness condition
The Spliceosomal Protein SF3B5 is a Novel Component of Drosophila SAGA that Functions in Gene Expression Independent of Splicing
The interaction between splicing factors and the transcriptional machinery provides an intriguing link between the coupled processes of transcription and splicing. Here, we show that the two components of the SF3B complex, SF3B3 and SF3B5, that form part of the U2 small nuclear ribonucleoprotein particle (snRNP) are also subunits of the Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator complex in Drosophila melanogaster. Whereas SF3B3 had previously been identified as a human SAGA subunit, SF3B5 had not been identified as a component of SAGA in any species. We show that SF3B3 and SF3B5 bind to SAGA independent of RNA and interact with multiple SAGA subunits including Sgf29 and Spt7 in a yeast two-hybrid assay. Through analysis of sf3b5mutant flies, we show that SF3B5 is necessary for proper development and cell viability but not for histone acetylation. Although SF3B5 does not appear to function in SAGA\u27s histone-modifying activities, SF3B5 is still required for expression of a subset of SAGA-regulated genes independent of splicing. Thus, our data support an independent function of SF3B5 in SAGA\u27s transcription coactivator activity that is separate from its role in splicing
Weak and strong electronic correlations in Fe superconductors
In this chapter the strength of electronic correlations in the normal phase
of Fe-superconductors is discussed. It will be shown that the agreement between
a wealth of experiments and DFT+DMFT or similar approaches supports a scenario
in which strongly-correlated and weakly-correlated electrons coexist in the
conduction bands of these materials. I will then reverse-engineer the realistic
calculations and justify this scenario in terms of simpler behaviors easily
interpreted through model results. All pieces come together to show that Hund's
coupling, besides being responsible for the electronic correlations even in
absence of a strong Coulomb repulsion is also the origin of a subtle emergent
behavior: orbital decoupling. Indeed Hund's exchange decouples the charge
excitations in the different Iron orbitals involved in the conduction bands
thus causing an independent tuning of the degree of electronic correlation in
each one of them. The latter becomes sensitive almost only to the offset of the
orbital population from half-filling, where a Mott insulating state is
invariably realized at these interaction strengths. Depending on the difference
in orbital population a different 'Mottness' affects each orbital, and thus
reflects in the conduction bands and in the Fermi surfaces depending on the
orbital content.Comment: Book Chapte
Determining Protein Complex Connectivity Using a Probabilistic Deletion Network Derived from Quantitative Proteomics
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex
INTS3 controls the hSSB1-mediated DNA damage response
MISE is identified as a component of the Integrator complex required for DNA repair
Spectroscopic analysis of finite size effects around a Kondo quantum dot
We consider a simple setup in which a small quantum dot is strongly connected
to a finite size box. This box can be either a metallic box or a finite size
quantum wire.The formation of the Kondo screening cloud in the box strongly
depends on the ratio between the Kondo temperature and the box level spacing.
By weakly connecting two metallic reservoirs to the quantum dot, a detailed
spectroscopic analysis can be performed. Since the transport channels and the
screening channels are almost decoupled, such a setup allows an easier access
to the measure of finite-size effects associated with the finite extension of
the Kondo cloud.Comment: contribution to Les Houches proceeding, ``Quantum magnetism'' 200
- …