158,443 research outputs found
Evidence of dynamics reversal in tropical estuaries, geomorphological and sedimentological consequences (Salum and Casamance Rivers, Senegal)
ABSTRACT South Dakar Senegambian estuaries are subject to an unusual hydrodynamical regime caused by weak or absent run-off. In the Salum delta, each distributary lacks fresh water during most of the year. Only the tidal flows arc responsible for geomorphological and sedimentological effects. The current distribution shows a net discharge upstream due to the extensive evaporation and evapotranspiration in mangrove swamps and tidal flats. Consequently the salinity is always higher towards the river than near the sea. A high salinity bottom layer suggests the occurrence of a supersaline wedge of reverse sense to the salt wedge of a normal estuary. Such an inverse pattern is similarly displayed by sedimentological features (double upstream tumed spits) and by the external location of the turbidity maximum. A coherent reverse estuary model is suggested from our field observations
Resistance of Josephson Junction Arrays at Low Temperatures
We study motion of vortices in arrays of Josephson junctions at zero
temperature where it is controlled by quantum tunneling from one plaquette to
another. The tunneling process is characterized by a finite time and can be
slow compared to the superconducting gap (so that ). The
dissipation which accompanies this process arises from rare processes when a
vortex excites a quasiparticle above the gap while tunneling through a single
junction. We find that the dissipation is significant even in the case , in particular it is not exponentially small in this parameter. We
use the calculated energy dissipation for the single vortex jump to estimate
the physical resistance of the whole array.Comment: 24 pages, LaTeX references added, to appear in PR
Resonance contributions to HBT correlation radii
We study the effect of resonance decays on intensity interferometry for heavy
ion collisions. Collective expansion of the source leads to a dependence of the
two-particle correlation function on the pair momentum K. This opens the
possibility to reconstruct the dynamics of the source from the K-dependence of
the measured HBT radii. Here we address the question to what extent resonance
decays can fake such a flow signal. Within a simple parametrization for the
emission function we present a comprehensive analysis of the interplay of flow
and resonance decays on the one- and two-particle spectra. We discuss in detail
the non-Gaussian features of the correlation function introduced by long-lived
resonances and the resulting problems in extracting meaningful HBT radii. We
propose to define them in terms of the second order q-moments of the correlator
C(q, K). We show that this yields a more reliable characterisation of the
correlator in terms of its width and the correlation strength `lambda' than
other commonly used fit procedures. The normalized fourth-order q-moments
(kurtosis) provide a quantitative measure for the non-Gaussian features of the
correlator. At least for the class of models studied here, the kurtosis helps
separating effects from expansion flow and resonance decays, and provides the
cleanest signal to distinguish between scenarios with and without transverse
flow.Comment: 23 pages, twocolumn RevTeX, 12 eps-figures included, minor changes
following referee comment
Topological Evolution of Dynamical Networks: Global Criticality from Local Dynamics
We evolve network topology of an asymmetrically connected threshold network
by a simple local rewiring rule: quiet nodes grow links, active nodes lose
links. This leads to convergence of the average connectivity of the network
towards the critical value in the limit of large system size . How
this principle could generate self-organization in natural complex systems is
discussed for two examples: neural networks and regulatory networks in the
genome.Comment: 4 pages RevTeX, 4 figures PostScript, revised versio
Mesoscopic Transport Through Ballistic Cavities: A Random S-Matrix Theory Approach
We deduce the effects of quantum interference on the conductance of chaotic
cavities by using a statistical ansatz for the S matrix. Assuming that the
circular ensembles describe the S matrix of a chaotic cavity, we find that the
conductance fluctuation and weak-localization magnitudes are universal: they
are independent of the size and shape of the cavity if the number of incoming
modes, N, is large. The limit of small N is more relevant experimentally; here
we calculate the full distribution of the conductance and find striking
differences as N changes or a magnetic field is applied.Comment: 4 pages revtex 3.0 (2-column) plus 2 postscript figures (appended),
hub.pam.94.
Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings
We perform the characterization program for the supersymmetric configurations
and solutions of the , Supergravity Theory coupled to an
arbitrary number of vectors, tensors and hypermultiplets and with general
non-Abelian gaugins. By using the conditions yielded by the characterization
program, new exact supersymmetric solutions are found in the
model for the hyperscalars and with as the gauge group. The
solutions also content non-trivial vector and massive tensor fields, the latter
being charged under the U(1) sector of the gauge group and with selfdual
spatial components. These solutions are black holes with
near horizon geometry in the gauged version of the theory and for the ungauged
case we found naked singularities. We also analyze supersymmetric solutions
with only the scalars of the vector/tensor multiplets and the metric
as the non-trivial fields. We find that only in the null class the scalars
can be non-constant and for the case of constant we refine
the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear
in Class. Quantum Grav. 38 page
The Tails of the Crossing Probability
The scaling of the tails of the probability of a system to percolate only in
the horizontal direction was investigated numerically for correlated
site-bond percolation model for .We have to demonstrate that the
tails of the crossing probability far from the critical point have shape
where is the correlation
length index, is the probability of a bond to be closed. At
criticality we observe crossover to another scaling . Here is a scaling index describing the
central part of the crossing probability.Comment: 20 pages, 7 figures, v3:one fitting procedure is changed, grammatical
change
The Radio Afterglow and Host Galaxy of the Dark GRB 020819
Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius
with the SXC on HETE-2, only two lack optical afterglow detections, and the
high recovery rate among this sample has been used to argue that the fraction
of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can
be explained by the failure of ground-based searches to reach appropriate
limiting magnitudes, suppression of the optical light of these SXC dark bursts
seems likely. Here we report the discovery and observation of the radio
afterglow of GRB 020819, an SXC dark burst, which enables us to identify the
likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of
the GRB. The radio light curve is qualitatively similar to that of several
other radio afterglows, and may include an early-time contribution from the
emission of the reverse shock. The proposed host is a bright R = 19.5 mag
barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from
the galaxy core (16 kpc in projection), that is coincident with the radio
afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after
the burst and extending over more than 100 days, establishes strong upper
limits to the optical brightness of any afterglow or associated supernova.
Combining the afterglow radio fluxes and our earliest R-band limit, we find
that the most likely afterglow model invokes a spherical expansion into a
constant-density (rather than stellar wind-like) external environment; within
the context of this model, a modest local extinction of A_V ~ 1 mag is
sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see
http://www.astro.ku.dk/~pallja/dark.htm
Hydrogen molecule in a magnetic field: The lowest states of the Pi manifold and the global ground state of the parallel configuration
The electronic structure of the hydrogen molecule in a magnetic field is
investigated for parallel internuclear and magnetic field axes. The lowest
states of the manifold are studied for spin singlet and triplet as well as gerade and ungerade parity for a broad range of field
strengths For both states with gerade parity we
observe a monotonous decrease in the dissociation energy with increasing field
strength up to and metastable states with respect to the
dissociation into two H atoms occur for a certain range of field strengths. For
both states with ungerade parity we observe a strong increase in the
dissociation energy with increasing field strength above some critical field
strength . As a major result we determine the transition field strengths
for the crossings among the lowest , and
states. The global ground state for is the strongly
bound state. The crossings of the with the
and state occur at and , respectively. The transition between the and
state occurs at Therefore, the global ground state of the
hydrogen molecule for the parallel configuration is the unbound
state for The ground state for is the strongly bound state. This result is of great
relevance to the chemistry in the atmospheres of magnetic white dwarfs and
neutron stars.Comment: submitted to Physical Review
The Pondicherry interpretation of quantum mechanics: An overview
An overview of the Pondicherry interpretation of quantum mechanics is
presented. This interpretation proceeds from the recognition that the
fundamental theoretical framework of physics is a probability algorithm, which
serves to describe an objective fuzziness (the literal meaning of Heisenberg's
term "Unschaerfe," usually mistranslated as "uncertainty") by assigning
objective probabilities to the possible outcomes of unperformed measurements.
Although it rejects attempts to construe quantum states as evolving ontological
states, it arrives at an objective description of the quantum world that owes
nothing to observers or the goings-on in physics laboratories. In fact, unless
such attempts are rejected, quantum theory's true ontological implications
cannot be seen. Among these are the radically relational nature of space, the
numerical identity of the corresponding relata, the incomplete spatiotemporal
differentiation of the physical world, and the consequent top-down structure of
reality, which defies attempts to model it from the bottom up, whether on the
basis of an intrinsically differentiated spacetime manifold or out of a
multitude of individual building blocks.Comment: 18 pages, 1 eps figure, v3: with corrections made in proo
- …