1,245 research outputs found
Fission fragment mass reconstruction from Si surface barrier detector measurement
A method for plasma delay and pulse-height defect corrections for Si surface
barrier detectors (SBD) is presented. Based on known empirical formulae, simple
approximations involving the measured time-of-flight (TOF) and energy of the
ions were found and a mass reconstruction procedure was developed. The
procedure was applied for obtaining the fission fragment mass and angular
distributions from the Ni+Au reaction at 418 MeV and 383 MeV
incident energy using an array of eight SBDs.Comment: 3 pages, 1 table, 3 figures, submitted to NIM A ; 4 pages, 1 table, 5
figures, added discussion and figure
Eccentricity Trap: Trapping of Resonantly Interacting Planets near the Disk Inner Edge
Using orbital integration and analytical arguments, we have found a new
mechanism (an "eccentricity trap") to halt type I migration of planets near the
inner edge of a protoplanetary disk. Because asymmetric eccentricity damping
due to disk-planet interaction on the innermost planet at the disk edge plays a
crucial role in the trap, this mechanism requires continuous eccentricity
excitation and hence works for a resonantly interacting convoy of planets. This
trap is so strong that the edge torque exerted on the innermost planet can
completely halt type I migrations of many outer planets through mutual resonant
perturbations. Consequently, the convoy stays outside the disk edge, as a
whole. We have derived semi-analytical formula for the condition for the
eccentricity trap and predict how many planets are likely to be trapped. We
found that several planets or more should be trapped by this mechanism in
protoplanetary disks that have cavities. It can be responsible for the
formation of non-resonant, multiple, close-in super-Earth systems extending
beyond 0.1AU. Such systems are being revealed by radial velocity observations
to be quite common around solar-type stars.Comment: 24 pages, 7 figures, accepted for publication in Ap
Assessment of cervical myelopathy using transcranial magnetic stimulation and prediction of prognosis after laminoplasty
This is a non-final version of an article published in final form in SPINE 33(1): E15-E20, 2008.http://www.spinejournal.com/pt/re/spine/home | http://www.spinejournal.com/pt/re/spine/homeArticleSPINE. 33(1): E15-E20 (2008)journal articl
Quasi-fission reactions as a probe of nuclear viscosity
Fission fragment mass and angular distributions were measured from the
^{64}Ni+^{197}Au reaction at 418 MeV and 383 MeV incident energy. A detailed
data analysis was performed, using the one-body dissipation theory implemented
in the code HICOL. The effect of the window and the wall friction on the
experimental observables was investigated. Friction stronger than one-body was
also considered. The mass and angular distributions were consistent with
one-body dissipation. An evaporation code DIFHEAT coupled to HICOL was
developed in order to predict reaction time scales required to describe
available data on pre-scission neutron multiplicities. The multiplicity data
were again consistent with one-body dissipation. The cross-sections for touch,
capture and quasi-fission were also obtained.Comment: 25 pages REVTeX, 3 tables, 13 figures, submitted to Phys. Rev
Cassini ISS astrometry of the Saturnian satellites: Tethys, Dione, Rhea, Iapetus, and Phoebe 2004-2012
This work was mainly funded by European Community’s
Seventh Framework Program (FP7/2007-2013) under grant agreement 263466
for the FP7-ESPaCE, and partially by UPMC-EMERGENCE (contract number
EME0911), for which R.T. and V.L. are grateful. R.T. was also supported
by the Cassini mission. In addition, this work was supported by the Science
and Technology Facilites Council (Grant No. ST/F007566/1) and C.D.M. and
N.J.C. are grateful to them for financial assistance. C.D.M. is also grateful to
the Leverhulme Trust for the award of a Research Fellowship
Characteristics of L3 nerve root radiculopathy
ArticleSURGICAL NEUROLOGY. 72(1):36-40 2009journal articl
- …