132 research outputs found

    The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids

    Get PDF
    ortho-Aminomethylphenylboronic acids are used in receptors for carbohydrates and various other compounds containing vicinal diols. The presence of the o-aminomethyl group enhances the affinity towards diols at neutral pH, and the manner in which this group plays this role has been a topic of debate. Further, the aminomethyl group is believed to be involved in the turn-on of the emission properties of appended fluorophores upon diol binding. In this treatise, a uniform picture emerges for the role of this group: it primarily acts as an electron-withdrawing group that lowers the pK(a) of the neighbouring boronic acid thereby facilitating diol binding at neutral pH. The amine appears to play no role in the modulation of the fluorescence of appended fluorophores in the protic-solvent-inserted form of the boronic acid/boronate ester. Instead, fluorescence turn-on can be consistently tied to vibrational-coupled excited-state relaxation (a loose-bolt effect). Overall, this Review unifies and discusses the existing data as of 2019 whilst also highlighting why o-aminomethyl groups are so widely used, and the role they play in carbohydrate sensing using phenylboronic acids

    The 3' region of Human Papillomavirus type 16 early mRNAs decrease expression

    Get PDF
    BACKGROUND: High risk human papillomavirus (HR-HPV) infects mucosal surfaces and HR-HPV infection is required for development of cervical cancer. Accordingly, enforced expression of the early HR-HPV proteins can induce immortalisation of human cells. In most cervical cancers and cervical cancer cell lines the HR-HPV double stranded DNA genome has been integrated into the host cell genome. METHODS: We have used a retroviral GUS reporter system to generate pools of stably transfected HaCaT and SiHa cells. The HPV-16 early sequences that are deleted upon integration of the HPV-16 genome was inserted into the 3' UTR of the reporter mRNA. Pools containing thousands of independent integrations were tested for the steady state levels of the reporter mRNA by Real Time PCR and reporter protein by a GUS enzymatic activity assays. In addition, we tested the cellular distribution and half lives of the reporter mRNAs. The integrity of the reporter mRNAs were tested by northern blotting. RESULTS: We show that the 3' region of the HPV-16 early mRNAs (HPV-16 nucleotide (nt.) 2582–4214) act in cis to decrease both mRNA and protein levels. This region seems to affect transcription from the exogenous minimal CMV promoter or processing of the reporter mRNA. The observed repression was most pronounced at the protein level, suggesting that this sequence may also affect translation. For the HPV types: 2, 6, 11, 13, 18, 30, 31, and 35 we have investigated the regulatory effect of the regions corresponding to the HPV-16 nt. 3358–4214. For all types, except HPV-18, the region was found to repress expression by posttranscriptional mechanisms. CONCLUSION: We find that the 3' region of HPV-16 early mRNAs interfere with gene expression. It is therefore possible that the deletion of the 3' part of early HPV-16 mRNAs occurring during cervical oncogenesis could contribute to transformation of cells through deregulation of the viral oncogene synthesis. Moreover, we find that the corresponding region from several other HPV types also repress expression, suggesting that the repression by this region may be a general feature of the HPV life cycle

    Transfection of HeLa-cells with pEGFP plasmid power-assisted by impedance electroporation

    No full text
    Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 mu g DNA in 90 mu l low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and pulse length 0.1 ms were applied in 1-16 repetitions with a 10-sec pause interval between pulses. Surviving cells were stained by crystal violet and counted using a confocal microscope. Transfected cells were fixed with 10% formaldehyde and counted as green spots in a fluorescence microscope. In the present investigation we used the method of bioimpedance spectrometry to analyze the effect of EP on survival and transfection ratio of cells in suspension. DC and low-frequency AC currents preferably pass through the medium due to the high impedance of the cell membrane. At frequencies above 10 kHz the impedance of the cell membrane starts to decrease and the impedance value of the cell suspension approach a lower limit value R-infinity at infinite frequency. Recording of electrical impedance spectra of cells in culture was performed over a frequency range of 10 Hz to 125 kHz, allowing separation of the contribution from extracellular space and that of the cell membranes. A parallel resistance capacitance model of the cell suspension was used to evaluate the response of applying EP pulses. The values of the collective membrane resistance R-M decay exponentially (r(2) = 0.995) with the number of applied pulses. The ratio of the extrapolated value of the intact membrane resistance before pulsing, R-M,(O), and the value R-M,R-N after each pulse makes an index of the effect of electroporation on the cells. The ratio R-M,R-N/R-M,(O) as well as the relative change of the dissipation factor, tan delta, on the "Loss Change Index" (LCI) fits well a dose-response model (r(2) = 0.98) with the number of applied pulses. The changes in the model parameters membrane resistance Delta R-M = [1- R-M,(N)/R-M,o] and loss factor [1- tan delta(O)/tan Omega(N)] correlate well with the transfection ratio and fraction of dead cells. Those parameters were used for power-assisted electroporation in monitoring, controlling, and optimizing the EP procedure
    • …
    corecore