841 research outputs found

    Cellular Resolution Maps of X Chromosome Inactivation: Implications for Neural Development, Function, and Disease

    Get PDF
    SummaryFemale eutherian mammals use X chromosome inactivation (XCI) to epigenetically regulate gene expression from ∼4% of the genome. To quantitatively map the topography of XCI for defined cell types at single cell resolution, we have generated female mice that carry X-linked, Cre-activated, and nuclear-localized fluorescent reporters—GFP on one X chromosome and tdTomato on the other. Using these reporters in combination with different Cre drivers, we have defined the topographies of XCI mosaicism for multiple CNS cell types and of retinal vascular dysfunction in a model of Norrie disease. Depending on cell type, fluctuations in the XCI mosaic are observed over a wide range of spatial scales, from neighboring cells to left versus right sides of the body. These data imply a major role for XCI in generating female-specific, genetically directed, stochastic diversity in eutherian mammals on spatial scales that would be predicted to affect CNS function within and between individuals

    Understanding the Results of Multiple Linear Regression: Beyond Standardized Regression Coefficients

    Get PDF
    Multiple linear regression (MLR) remains a mainstay analysis in organizational research, yet intercorrelations between predictors (multicollinearity) undermine the interpretation of MLR weights in terms of predictor contributions to the criterion. Alternative indices include validity coefficients, structure coefficients, product measures, relative weights, all-possible-subsets regression, dominance weights, and commonality coefficients. This article reviews these indices, and uniquely, it offers freely available software that (a) computes and compares all of these indices with one another, (b) computes associated bootstrapped confidence intervals, and (c) does so for any number of predictors so long as the correlation matrix is positive definite. Other available software is limited in all of these respects. We invite researchers to use this software to increase their insights when applying MLR to a data set. Avenues for future research and application are discussed

    Dzyaloshinskii--Moriya interaction: How to measure its sign in weak ferromagnetics?

    Full text link
    Three experimental techniques sensitive to the sign of the Dzyaloshinskii--Moriya interaction are discussed: neutron diffraction, Moessbauer gamma-ray diffraction, and resonant x-ray scattering. Classical examples of hematite (alpha-Fe2O3) and MnCO3 crystals are considered in detailComment: 5 pages, 1 figure; to be published in JETP Letter

    The Puromycin Route to Assess Stereo- and Regiochemical Constraints on Peptide Bond Formation in Eukaryotic Ribosomes

    Get PDF
    We synthesized a series of puromycin analogues to probe the chemical specificity of the ribosome in an intact eukaryotic translation system. These studies reveal that both d-enantiomers and β-amino acid analogues can be incorporated into protein, and provide a quantitative means to rank natural and unnatural residues. Modeling of a d-amino acid analogue into the 50S ribosomal subunit indicates that steric clash may provide part of the chiral discrimination. The data presented provide one metric of the chiral and regiospecificity of mammalian ribosomes

    Metabolic investigation of host/pathogen interaction using MS2-infected Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA viruses are responsible for a variety of illnesses among people, including but not limited to the common cold, the flu, HIV, and ebola. Developing new drugs and new strategies for treating diseases caused by these viruses can be an expensive and time-consuming process. Mathematical modeling may be used to elucidate host-pathogen interactions and highlight potential targets for drug development, as well providing the basis for optimizing patient treatment strategies. The purpose of this work was to determine whether a genome-scale modeling approach could be used to understand how metabolism is impacted by the host-pathogen interaction during a viral infection. <it>Escherichia coli</it>/MS2 was used as the host-pathogen model system as MS2 is easy to work with, harmless to humans, but shares many features with eukaryotic viruses. In addition, the genome-scale metabolic model of <it>E. coli </it>is the most comprehensive model at this time.</p> <p>Results</p> <p>Employing a metabolic modeling strategy known as "flux balance analysis" coupled with experimental studies, we were able to predict how viral infection would alter bacterial metabolism. Based on our simulations, we predicted that cell growth and biosynthesis of the cell wall would be halted. Furthermore, we predicted a substantial increase in metabolic activity of the pentose phosphate pathway as a means to enhance viral biosynthesis, while a break down in the citric acid cycle was predicted. Also, no changes were predicted in the glycolytic pathway.</p> <p>Conclusions</p> <p>Through our approach, we have developed a technique of modeling virus-infected host metabolism and have investigated the metabolic effects of viral infection. These studies may provide insight into how to design better drugs. They also illustrate the potential of extending such metabolic analysis to higher order organisms, including humans.</p

    Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V_2O_3

    Get PDF
    Magnetic correlations in all four phases of pure and doped vanadium sesquioxide V_2O_3 have been examined by magnetic thermal neutron scattering. While the antiferromagnetic insulator can be accounted for by a Heisenberg localized spin model, the long range order in the antiferromagnetic metal is an incommensurate spin-density-wave, resulting from a Fermi surface nesting instability. Spin dynamics in the strongly correlated metal are dominated by spin fluctuations in the Stoner electron-hole continuum. Furthermore, our results in metallic V_2O_3 represent an unprecedentedly complete characterization of the spin fluctuations near a metallic quantum critical point, and provide quantitative support for the SCR theory for itinerant antiferromagnets in the small moment limit. Dynamic magnetic correlations for energy smaller than k_BT in the paramagnetic insulator carry substantial magnetic spectral weight. However, the correlation length extends only to the nearest neighbor distance. The phase transition to the antiferromagnetic insulator introduces a sudden switching of magnetic correlations to a different spatial periodicity which indicates a sudden change in the underlying spin Hamiltonian. To describe this phase transition and also the unusual short range order in the paramagnetic state, it seems necessary to take into account the orbital degrees of freedom associated with the degenerate d-orbitals at the Fermi level in V_2O_3.Comment: Postscript file, 24 pages, 26 figures, 2 tables, accepted by Phys. Rev.
    • …
    corecore