599 research outputs found
Retrieval of upper atmosphere pressure-temperature profiles from high resolution solar occultation spectra
Pressure-temperature profiles over the 18 to 75 km altitude range were retrieved from 0.01 cm(-1) resolution infrared solar absorption spectra recorded with the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer operating in the solar occultation mode during the Spacelab 3 shuttle mission (April 30 to May 1, 1985). The analysis method is described and preliminary results deduced for five occultation events are compared to correlative pressure-temperature measurments
Impacts of the COVID-19 Pandemic on Elementary School Teachers’ Practices and Perceptions Across the Spring and Fall 2020 Semesters
Following the closure of schools in the spring 2020 semester due to the COVID-19 pandemic, we developed two surveys to understand how the pandemic affected elementary education in the U.S. First, we distributed a survey at the end of the spring 2020 semester to understand how school closures impacted delivery of instruction. Second, we conducted a follow up survey in November 2020 to determine the nature of instruction provided to students when schools did or did not re-open in Fall 2020 and understand teachers’ perceptions of student learning and achievement during the pandemic. Each survey was sent to a sample of over 9,000 teachers who were randomly selected to be representative of the population of the U.S. Results indicated that many students did not receive direct instruction in academic skills during the spring 2020 semester. Although by late fall 2020 teachers reported broad use of some form of in-person instructional model, teachers indicated that many of their students were not ready to transition to the next grade level and that achievement gaps were larger in fall 2020 than in typical years. These findings have important implications for practices during potential school closures in the future
New observations of stratospheric N2O5
The unequivocal detection of N2O5 in the stratosphere was reported by Toon et al. based on measurements of the absorption by the N2O5 bands at 1246 and 1720/cm in solar occulation spectra recorded at sunrise near 47 S latitude by the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment during the Spacelab 3 (SL3) shuttle mission. Additional measurements and analysis of stratospheric N2O5 derived from the ATMOS/SL3 spectra are reported. The primary results are the detection and measurement of N2O5 absorption at sunset in the lower stratosphere, the inversion of a precise (approximately 10 percent) N2O5 sunrise vertical distribution between 25.5 and 37.5 km altitude, and the identification and measurement of absorption by the N2O5 743/cm band at sunrise. Assuming 4.32 x 10(sup -17) and 4.36 x 10(sup -17)/cm/molecule/sq cm respectively for the integrated intensities of the 1246 and 743/cm bands at stratospheric temperatures, retrieved volume mixing ratios in parts per billion by volume (ppbv) at sunrise (47 S latitude) are 1.32 + or - 0.34 at 37.5 km, 1.53 + or - 0.35 at 35.5 km, 1.63 + or - 0.36 at 33.5 km, 1.60 + or - 0.34 at 31.5 km, 1.43 + or - 0.30 at 29.5 km, 1.15 + or - 0.24 at 27.5 km, and 0.73 + or - 0.15 at 25.5 km. Retrieved VMRs in ppbv at sunset (30 N latitude) are 0.13 + or - 0.05 at 29.5 km, 0.14 + or - 0.05 at 27.5 km, and 0.10 + or - 0.04 at 25.5 km. Quoted error limits (1 sigma) include the error in the assumed band intensities (approximately 20 percent). Within the error limits of the measurements, the inferred mixing ratios at sunrise agree with diurnal photochemical model predictions obtained by two groups using current photochemical data. The measured mixing ratios at sunset are lower than the model predictions with differences of about a factor of 2 at 25 km altitude
Issues on Reproducibility/Reliability of Magnetic NDE Methods
One of the critical elements related to the practicality of any NDE technique is its reproducibility under nominally the same inspection conditions. The results of certain test methodologies, however, are not always repeatable and understanding the origin of the irreproducibility is often as critical as obtaining reproducible results. One example is the characterization of residual stress in structural ferromagnets using the magnetoacoustic (MAC) method [1]. Although it has not been widely publicized, the test results of this method are known to be time-dependent. Two distinct types of time dependencies have been observed during testing. The first type has a clearly definable relaxation time, while no such trend has been observed for the second
Finite Element Modeling of the Bulk Magnetization of Railroad Wheels to Improve Test Conditions for Magnetoacoustic Residual Stress Measurements
The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples[l-4]. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically[5,6]. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample[6]. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels
Analysis of the mutual inductance between two parallel plates for the detection of surface flaws
There has recently been much effort behind the development of NDE methods applicable to the detection of surface/subsurface flaws in thin metallic structures with a rapid scan capability. One such method, an electromagnetic technique using a current-sheet parallel to the surface of a specimen in order to induce eddy current flow shows a high potential for satisfying the rapid scan requirement stated above. The technique is based on the detection of flaw-induced magnetic field components normal to the specimen surface by an appropriate detection mechanism positioned above the current-sheet as shown schematically in Fig. 1. As indicated in this figure, the current-sheet separates the source of the normal magnetic field components from the detector in such a way that the electric and magnetic properties of the current-sheet can be a major factor affecting the strength of the detected signals. The purpose of the present study is, therefore, to perform a detailed investigation on the effect of the material properties of the current-sheet on the detected signal strength and to establish a simple theoretical model for the detection mechanism
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences
- …