25,668 research outputs found

    High-temperature catalyst supports and ceramic membranes: Metastability and particle packing

    Get PDF
    Parameters and/or processes responsible for the stability of catalyst supports and ceramic membranes are discussed. Two major parameters/processes were identified which are responsible for the stability of sol-gel derived nanostructured oxides at elevated temperatures. They are metastable-to-stable phase transformation and structure and packing of primary particles within the aggregate. Based on these observations, strategies to develop thermostable nanostructured oxides for high-temperature membrane and catalyst applications are discussed by taking titania and titania-alumina nanocomposites as examples

    The Isospin Asymmetry in Anomalous Fluid Dynamics

    Full text link
    The dynamics of fluids in which the constituent particles carry nonabelian charges can be described succinctly in terms of group-valued variables via a generalization of the co-adjoint orbit action for particles. This formalism, which is particularly suitable for incorporating anomalies, has previously been used for the chiral magnetic and chiral vorticity effects. Here we consider the similar effect for the isospin which corresponds to an angular asymmetry for neutral pions.Comment: 12 page

    Stability Properties of the Time Domain Electric Field Integral Equation Using a Separable Approximation for the Convolution with the Retarded Potential

    Full text link
    The state of art of time domain integral equation (TDIE) solvers has grown by leaps and bounds over the past decade. During this time, advances have been made in (i) the development of accelerators that can be retrofitted with these solvers and (ii) understanding the stability properties of the electric field integral equation. As is well known, time domain electric field integral equation solvers have been notoriously difficult to stabilize. Research into methods for understanding and prescribing remedies have been on the uptick. The most recent of these efforts are (i) Lubich quadrature and (ii) exact integration. In this paper, we re-examine the solution to this equation using (i) the undifferentiated form of the TD-EFIE and (ii) a separable approximation to the spatio-temporal convolution. The proposed scheme can be constructed such that the spatial integrand over the source and observer domains is smooth and integrable. As several numerical results will demonstrate, the proposed scheme yields stable results for long simulation times and a variety of targets, both of which have proven extremely challenging in the past.Comment: 9 pages, 13 figures. To be published in IEEE Transactions on Antennas and Propagatio

    Textural evolution and phase transformation in titania membranes: Part 1. -unsupported membranes

    Get PDF
    Textural evolution in sol–gel derived nanostructured unsupported titania membranes has been studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermal gravimetry (TG), X-ray diffraction (XRD) and N2 adsorption. The anatase-to-rutile phase transformation kinetics were studied using the Avrami model. The precursor gel had a surface area of ca. 165 m2 g–1, which after heat treatment at 600 °C for 8 h reduced to zero. Undoped titania-gel layers transformed to more than 95% rutile after calcination at 600 °C for 8 h. The causes of surface-area reduction and pore growth were anatase crystallite growth and the enhanced sintering of rutile during transformation. Lanthanum oxide was identified as a suitable dopant for shifting the transformation temperature to ca. 850 °C. Lanthanum oxide doped titania showed an improved stability of porous texture compared to that of the undoped titania membranes

    Distribution functions for hard thermal particles in QCD

    Full text link
    We find a closed-form for the distribution function (defined in terms of a Wigner operator) for hot coloured particles in a background gluon field, in the hard thermal loop approximation. We verify that the current is the same as that derived from the known effective action.Comment: 12 page

    Biexciton recombination rates in self-assembled quantum dots

    Get PDF
    The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.Comment: 11 pages, 4 figure

    Effective Theory of Wilson Lines and Deconfinement

    Get PDF
    To study the deconfining phase transition at nonzero temperature, I outline the perturbative construction of an effective theory for straight, thermal Wilson lines. Certain large, time dependent gauge transformations play a central role. They imply the existence of interfaces, which can be used to determine the form of the effective theory as a gauged, nonlinear sigma model of adjoint matrices. Especially near the transition, the Wilson line may undergo a Higgs effect. As an adjoint field, this can generate eigenvalue repulsion in the effective theory.Comment: 6 pages, LaTeX. Final, published version. Refs. 7, 39, and 40 added. In Ref. 37, there is an expanded discussion of a "fuzzy" bag mode
    • …
    corecore