322 research outputs found

    CCS Imaging of the Starless Core L1544: An Envelope with Infall and Rotation

    Full text link
    We have carried out observations of the starless core L1544 in the CCS (J_N=3_2-2_1) line at 9 millimeters wavelength using the BIMA array. The maps show an elongated condensation, 0.15 x 0.045 pc in size, with stronger emission at the edges. The appearance is consistent with a flattened, ringlike structure viewed at high inclination to the line of sight. The CCS molecule is likely heavily depleted in the inner part of the core. The position velocity diagram along the major axis shows a remarkable pattern, a "tilted ellipse", that can be reproduced by a simple model ring with motions of both infall and rotation. The models suggest comparable velocities for infall and rotation, ~0.1 km/s, in the outermost envelope, at radius 15000 AU.Comment: 14 pages, 4 figures, AAS-LaTex v4.0, will be published in ApJ

    Millimeter Dust Emission in the GQ Lup System

    Full text link
    We present Submillimeter Array observations of the GQ Lup system at 1.3 millimeters wavelength with 0\farcs4 (āˆ¼\sim60 AU) resolution. Emission is detected from the position of the primary star, GQ Lup A, and is marginally resolved. No emission is detected from the substellar companion, GQ Lup B, 0\farcs7 away. These data, together with models of the spectral energy distribution, suggest a compact disk around GQ Lup A with mass āˆ¼3\sim 3 MJup_{Jup}, perhaps truncated by tidal forces. There is no evidence for a gap or hole in the disk that might be the signature of an additional inner companion body capable of scattering GQ Lup B out to āˆ¼100\sim100 AU separation from GQ Lup A. For GQ Lup B to have formed {\it in situ}, the disk would have to have been much more massive and extended.Comment: 16 pages, 2 figures, accepted to A

    The CO Molecular Outflows of IRAS 16293-2422 Probed by the Submillimeter Array

    Full text link
    We have mapped the proto-binary source IRAS 16293-2422 in CO 2-1, 13CO 2-1, and CO 3-2 with the Submillimeter Array (SMA). The maps with resolution of 1".5-5" reveal a single small scale (~3000 AU) bipolar molecular outflow along the east-west direction. We found that the blueshifted emission of this small scale outflow mainly extends to the east and the redshifted emission to the west from the position of IRAS 16293A. A comparison with the morphology of the large scale outflows previously observed by single-dish telescopes at millimeter wavelengths suggests that the small scale outflow may be the inner part of the large scale (~15000 AU) E-W outflow. On the other hand, there is no clear counterpart of the large scale NE-SW outflow in our SMA maps. Comparing analytical models to the data suggests that the morphology and kinematics of the small scale outflow can be explained by a wide-angle wind with an inclination angle of ~30-40 degrees with respect to the plane of the sky. The high resolution CO maps show that there are two compact, bright spots in the blueshifted velocity range. An LVG analysis shows that the one located 1" to the east of source A is extremely dense, n(H_2)~10^7 cm^-3, and warm, T_kin >55 K. The other one located 1" southeast of source B has a higher temperature of T_kin >65 K but slightly lower density of n(H_2)~10^6 cm^-3. It is likely that these bright spots are associated with the hot core-like emission observed toward IRAS 16293. Since both two bright spots are blueshifted from the systemic velocity and are offset from the protostellar positions, they are likely formed by shocks.Comment: 27 pages, 8 figures, accepted for publication in ApJ, minor typos correcte

    Imaging the Disk around TW Hydrae with the Submillimeter Array

    Get PDF
    We present ~2"-4" aperture synthesis observations of the circumstellar disk surrounding the nearby young star TW Hya in the CO J = 2-1 and J = 3-2 lines and associated dust continuum obtained with the partially completed Submillimeter Array. The extent and peak flux of the 230 and 345 GHz dust emission follow closely the predictions of the irradiated accretion disk model of Calvet et al. The resolved molecular line emission extends to a radius of at least 200 AU, the full extent of the disk visible in scattered light, and shows a clear pattern of Keplerian rotation. Comparison of the images with two-dimensional Monte Carlo models constrains the disk inclination angle to 7Ā° Ā± 1Ā°. The CO emission is optically thick in both lines, and the kinetic temperature in the line formation region is ~20 K. Substantial CO depletion, by an order of magnitude or more from canonical dark cloud values, is required to explain the characteristics of the line emission

    Infall, Outflow, Rotation, and Turbulent Motions of Dense Gas within NGC 1333 IRAS 4

    Full text link
    Millimeter wavelength observations are presented of NGC 1333 IRAS 4, a group of highly-embedded young stellar objects in Perseus, that reveal motions of infall, outflow, rotation, and turbulence in the dense gas around its two brightest continuum objects, 4A and 4B. These data have finest angular resolution of approximately 2" (0.0034 pc) and finest velocity resolution of 0.13 km/s. Infall motions are seen from inverse P-Cygni profiles observed in H2CO 3_12-2_11 toward both objects, but also in CS 3-2 and N2H+ 1-0 toward 4A, providing the least ambiguous evidence for such motions toward low-mass protostellar objects. Outflow motions are probed by bright line wings of H2CO 3_12-2_11 and CS 3-2 observed at positions offset from 4A and 4B, likely tracing dense cavity walls. Rotational motions of dense gas are traced by a systematic variation of the N2H+ line velocities, and such variations are found around 4A but not around 4B. Turbulent motions appear reduced with scale, given N2H+ line widths around both 4A and 4B that are narrower by factors of 2 or 3 than those seen from single-dish observations. Minimum observed line widths of approximately 0.2 km/s provide a new low, upper bound to the velocity dispersion of the parent core to IRAS 4, and demonstrate that turbulence within regions of clustered star formation can be reduced significantly. A third continuum object in the region, 4B', shows no detectable line emission in any of the observed molecular species.Comment: LateX, 51 pages, 9 figures, accepted by Ap

    An evolved disk surrounding the massive main sequence star MWC 297?

    Full text link
    We present the results of the interferometric observations of the circumstellar disk surrounding MWC 297 in the continuum at 230 GHz (1.3 mm) and in the (J=2-1) rotational transitions of 12^{12}CO,13^{13}CO and C18^{18}O using the Submillimeter Array. At a distance of 250 pc, MWC 297 is one of the closest, young massive stars (Mā‹†_{\star} āˆ¼\sim10 MāŠ™_{\odot}) to us. Compact continuum emission is detected towards MWC 297 from which we estimate a disk mass (gas+dust) of 0.07 MāŠ™_{\odot} and a disk radius of ā‰¤\le 80 AU. Our result demonstrates that circumstellar disks can survive around massive stars well into their main sequence phase even after they have become optically visible. Complementing our observations with the data compiled from the literature, we find the submm dust opacity index Ī²\beta to be between 0.1 and 0.3. If the emission is optically thin, the low value of Ī²\beta indicates the presence of relatively large grains in the disk, possibly because of grain growth. We do not detect any CO emission associated with the continuum source. We argue that the 13^{13}CO emission from the disk is likely optically thin, in which case, we derive an upper limit to the gas mass which implies significant depletion of molecular gas in the disk. The mass of this disk and the evolutionary trends observed are similar to those found for intermediate mass Herbig Ae stars and low mass T Tauri stars.Comment: 4 pages, 3 Figures, accepted for publication in ApJ

    Organic Molecules in Low-Mass Protostellar Hot Cores: Submillimeter Imaging of IRAS 16293-2422

    Full text link
    Arcsecond-resolution spectral observations toward the protobinary system IRAS 16293-2422 at 344 and 354 GHz were conducted using the Submillimeter Array. Complex organic molecules such as CH3OH and HCOOCH3 were detected. Together with the rich organic inventory revealed, it clearly indicates the existence of two, rather than one, compact hot molecular cores (smaller than or equal to 400 AU in radius) associated with each of the protobinary components identified by their dust continuum emission in the inner star-forming core.Comment: 11 pages, 3 figures, to be published in ApJ

    PROSAC: A Submillimeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows and Hot Cores

    Get PDF
    This paper presents a large spectral line and continuum survey of 8 deeply embedded, low-mass protostellar cores using the Submillimeter Array. Each source was observed in high excitation lines of some of the most common molecular species, CO, HCO+, CS, SO, H2CO, CH3OH and SiO. Line emission from 11 species originating from warm and dense gas have been imaged at high angular resolution (1-3"; typically 200-600 AU) together with continuum emission at 230 GHz (1.3 mm) and 345 GHz (0.8 mm). Compact continuum emission is observed for all sources which likely originates in marginally optically thick circumstellar disks, with typical lower limits to their masses of 0.1 M_sun (1-10% of the masses of their envelopes) and having a dust opacity law with beta approximately 1. Prominent outflows are present in CO 2-1 observations in all sources: the most diffuse outflows are found in the sources with the lowest ratios of disk-to-envelope mass, and it is suggested that these sources are in a phase where accretion of matter from the envelope has almost finished and the remainder of the envelope material is being dispersed by the outflows. Other characteristic dynamical signatures are found with inverse P Cygni profiles indicative of infalling motions seen in the 13CO 2-1 lines toward NGC1333-IRAS4A and -IRAS4B. Outflow-induced shocks are present on all scales in the protostellar environments and are most clearly traced by the emission of CH3OH in NGC1333-IRAS4A and -IRAS4B. These observations suggest that the emission of CH3OH and H2CO from these proposed "hot corinos" are related to the shocks caused by the protostellar outflows. Only one source, NGC1333-IRAS2A, has evidence for hot, compact CH3OH emission coincident with the embedded protostar.Comment: Accepted for publication in ApJ (52 pages; 9 figures). Abstract abridge
    • ā€¦
    corecore