145 research outputs found

    Book Reviews

    Get PDF

    Incidence and Prevalence of Unrecognized Myocardial Infarction in People With Diabetes: A substudy of the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes (RECORD) study

    Get PDF
    <p>OBJECTIVE: To examine the prevalence and incidence of unrecognized myocardial infarction in a contemporary population with type 2 diabetes.</p> <p>RESEARCH DESIGN AND METHODS: We performed a retrospective analysis of the electrocardiograms (ECGs) recorded at baseline and after 2 years for the first 1,004 type 2 diabetic individuals to be randomized in the Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycemia in Diabetes (RECORD) study.</p> <p>RESULTS: ECGs suitable for analysis were obtained from 669 participants. The prevalence of unrecognized Q-wave myocardial infarction at baseline was 1.9% (n = 13). The incidence of unrecognized Q-wave myocardial infarction at the end of 2 years of follow-up was 1.5/1,000-person-years (n = 2). One-third (13 of 39) of prevalent and one-quarter (2 of 8) of incident myocardial infarctions were unrecognized.</p> <p>CONCLUSIONS: Although the prevalence and incidence of myocardial infarction was low, unrecognized Q-wave myocardial infarctions made up a substantial proportion of all events.</p&gt

    T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    Get PDF
    BACKGROUND: Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. METHODS: Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. RESULTS: At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. CONCLUSION: T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI

    Cells of the adult human heart

    Get PDF
    Abstract: Cardiovascular disease is the leading cause of death worldwide. Advanced insights into disease mechanisms and therapeutic strategies require a deeper understanding of the molecular processes involved in the healthy heart. Knowledge of the full repertoire of cardiac cells and their gene expression profiles is a fundamental first step in this endeavour. Here, using state-of-the-art analyses of large-scale single-cell and single-nucleus transcriptomes, we characterize six anatomical adult heart regions. Our results highlight the cellular heterogeneity of cardiomyocytes, pericytes and fibroblasts, and reveal distinct atrial and ventricular subsets of cells with diverse developmental origins and specialized properties. We define the complexity of the cardiac vasculature and its changes along the arterio-venous axis. In the immune compartment, we identify cardiac-resident macrophages with inflammatory and protective transcriptional signatures. Furthermore, analyses of cell-to-cell interactions highlight different networks of macrophages, fibroblasts and cardiomyocytes between atria and ventricles that are distinct from those of skeletal muscle. Our human cardiac cell atlas improves our understanding of the human heart and provides a valuable reference for future studies
    corecore