3,829 research outputs found

    Selection of neutralizing antibody escape mutants with type A influenza virus HA-specific polyclonal antisera: possible significance for antigenic drift

    Get PDF
    Ten antisera were produced in rabbits by two or three intravenous injections of inactivated whole influenza type A virions. All contained haemagglutination-inhibition (HI) antibody directed predominantly to an epitope in antigenic site B and, in addition, various amounts of antibodies to an epitope in site A and in site D. The ability of untreated antisera to select neutralization escape mutants was investigated by incubating virus possessing the homologous haemagglutinin with antiserum adjusted to contain anti-B epitope HI titres of 100, 1000 and 10000 HIU/ml. Virus-antiserum mixtures were inoculated into embryonated hen's eggs, and progeny virus examined without further selection. Forty percent of the antisera at a titre of 1000 HIU/ml selected neutralizing antibody escape mutants as defined by their lack of reactivity to Mab HC10 (site B), and unchanged reactivity to other Mabs to site A and site D epitopes. All escape mutant-selecting antisera had a ratio of anti-site B (HC10)-epitope antibody[ratio]other antibodies of [gt-or-equal, slanted]2·0[ratio]1. The antiserum with the highest ratio (7·4[ratio]1) selected escape mutants in all eggs tested in four different experiments. No antiserum used at a titre of 10000 HIU/ml allowed multiplication of any virus. All antisera used at a titre of 100 HIU/ml permitted virus growth, but this was wild-type (wt) virus. We conclude that a predominant epitope-specific antibody response, a titre of [gt-or-equal, slanted]1000 HIU/ml, and a low absolute titre of other antibodies ([less-than-or-eq, slant]500 HIU/ml) are three requirements for the selection of escape mutants. None of the antisera in this study could have selected escape mutants without an appropriate dilution factor, so the occurrence of an escape mutant-selecting antiserum in nature is likely to be a rare event

    Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity

    Full text link
    We present the results of measurements of the solar neutrino capture rate in gallium metal by the Russian-American Gallium Experiment SAGE during slightly more than half of a 22-year cycle of solar activity. Combined analysis of the data of 92 runs during the 12-year period January 1990 through December 2001 gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8 +5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more than half of the predicted standard solar model rate of 128 SNU. We give the results of new runs beginning in April 1998 and the results of combined analysis of all runs since 1990 during yearly, monthly, and bimonthly periods. Using a simple analysis of the SAGE results combined with those from all other solar neutrino experiments, we estimate the electron neutrino pp flux that reaches the Earth to be (4.6 +/- 1.1) E10/(cm^2-s). Assuming that neutrinos oscillate to active flavors the pp neutrino flux emitted in the solar fusion reaction is approximately (7.7 +/- 1.8) E10/(cm^2-s), in agreement with the standard solar model calculation of (5.95 +/- 0.06) E10/(cm^2-s).Comment: English translation of article submitted to Russian journal Zh. Eksp. Teor. Fiz. (JETP); 12 pages, 5 figures. V2: Added winter-summer difference and 2 reference

    Activities of \gamma-ray emitting isotopes in rainwater from Greater Sudbury, Canada following the Fukushima incident

    Full text link
    We report the activity measured in rainwater samples collected in the Greater Sudbury area of eastern Canada on 3, 16, 20, and 26 April 2011. The samples were gamma-ray counted in a germanium detector and the isotopes 131I and 137Cs, produced by the fission of 235U, and 134Cs, produced by neutron capture on 133Cs, were observed at elevated levels compared to a reference sample of ice-water. These elevated activities are ascribed to the accident at the Fukushima Dai-ichi nuclear reactor complex in Japan that followed the 11 March earthquake and tsunami. The activity levels observed at no time presented health concerns.Comment: 4 pages, 8 figure

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene

    Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO surface

    Full text link
    Low-energy deposition of neutral Pd_N clusters (N=2-7 and 13) on a MgO(001) surface F-center (FC) was studied by spin-density-functional molecular dynamics simulations. The incident clusters are steered by an attractive "funnel" created by the FC, resulting in adsorption of the cluster, with one of its atoms bonded atop of the FC. The deposited Pd_2-Pd_6 clusters retain their gas-phase structures, while for N>6 surface-commensurate isomers are energetically more favorable. Adsorbed clusters with N > 3 are found to remain magnetic at the surface.Comment: 5 pages, 2 figs, Phys.Rev.Lett., accepte

    A Lithium Experiment in the Program of Solar Neutrino Research

    Full text link
    The experiments sensitive to pp-neutrinos from the Sun are very perspective for the precise measurement of a mixing angle θ12\theta_{12}. A ν\nu e^{-} scattering experiment (Xmass) and/or a charged-current experiment (the indium detector) can measure the flux of electron pp-neutrinos. One can find the total flux of pp-neutrinos from a luminosity constraint after the contribution of 7^7Be and CNO neutrinos to the total luminosity of the Sun are measured. The radiochemical experiment utilizing a lithium target has the high sensitivity to the CNO neutrinos, thus, it has a good promise for the precise measurement of a mixing angle and for the test of a current theory of the evolution of the stars.Comment: 6 pages, 2 figures, 1 table, A report made by A.Kopylov at International Conference NANP-2005, June 2005, Dubna, Russi

    Neutrino flavour relaxation or neutrino oscillations?

    Full text link
    We propose the new mechanism of neutrino flavour relaxation to explain the experimentally observed changes of initial neutrino flavour fluxes. The test of neutrino relaxation hypothesis is presented, using the data of modern reactor, solar and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavour relaxation model can be done in future experiments

    Probability of a Solution to the Solar Neutrino Problem Within the Minimal Standard Model

    Get PDF
    Tests, independent of any solar model, can be made of whether solar neutrino experiments are consistent with the minimal Standard Model (stable, massless neutrinos). If the experimental uncertainties are correctly estimated and the sun is generating energy by light-element fusion in quasi-static equilibrium, the probability of a standard-physics solution is less than 2%. Even when the luminosity constraint is abandoned, the probability is not more than 4%. The sensitivity of the conclusions to input parameters is explored.Comment: PRL, Revtex, 1 figure, 5 page

    How many sigmas is the solar neutrino effect?

    Get PDF
    The minimal standard electroweak model can be tested by allowing all the solar neutrino fluxes, with undistorted energy spectra, to be free parameters in fitting the measured solar neutrino event rates, subject only to the condition that the total observed luminosity of the sun is produced by nuclear fusion. The rates of the five experiments prior to SNO (chlorine, Kamiokande, SAGE, GALLEX, Super-Kamiokande) cannot be fit by an arbitrary choice of undistorted neutrino fluxes at the level of 2.5 sigma (formally 99% C.L.). Considering just SNO and Super-Kamiokande, the discrepancy is at the 3.3 sigma level(10^{-3} C.L.). If all six experiments are fit simultaneously, the formal discrepancy increases to 4 sigma (7*10^{-5} C.L.). If the relative scaling in temperature of the nuclear reactions that produce 7Be and 8B neutrinos is taken into account, the formal discrepancy is at the 7.4 sigma level.Comment: 1 figure; related information at http://www.sns.ias.edu/~jn
    corecore