20,265 research outputs found

    Symmetric path integrals for stochastic equations with multiplicative noise

    Get PDF
    A Langevin equation with multiplicative noise is an equation schematically of the form dq/dt = - F(q) + e(q) xi, where e(q) xi is Gaussian white noise whose amplitude e(q) depends on q itself. I show how to convert such equations into path integrals. The definition of the path integral depends crucially on the convention used for discretizing time, and I specifically derive the correct path integral when the convention used is the natural, time-symmetric one that time derivatives are (q_t - q_{t-\Delta t}) / \Delta t and coordinates are (q_t + q_{t-\Delta t}) / 2. [This is the convention that permits standard manipulations of calculus on the action, like naive integration by parts.] It has sometimes been assumed in the literature that a Stratanovich Langevin equation can be quickly converted to a path integral by treating time as continuous but using the rule \theta(t=0) = 1/2. I show that this prescription fails when the amplitude e(q) is q-dependent.Comment: 8 page

    A method to construct refracting profiles

    Full text link
    We propose an original method for determining suitable refracting profiles between two media to solve two related problems: to produce a given wave front from a single point source after refraction at the refracting profile, and to focus a given wave front in a fixed point. These profiles are obtained as envelopes of specific families of Cartesian ovals. We study the singularities of these profiles and give a method to construct them from the data of the associated caustic.Comment: 12 pages, 5 figure

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    Hydrodynamics of Micro-swimmers in Films

    Get PDF
    One of the principal mechanisms by which surfaces and interfaces affect microbial life is by perturbing the hydrodynamic flows generated by swimming. By summing a recursive series of image systems we derive a numerically tractable approximation to the three-dimensional flow fields of a Stokeslet (point force) within a viscous film between a parallel no-slip surface and no-shear interface and, from this Green's function, we compute the flows produced by a force- and torque-free micro-swimmer. We also extend the exact solution of Liron & Mochon (1976) to the film geometry, which demonstrates that the image series gives a satisfactory approximation to the swimmer flow fields if the film is sufficiently thick compared to the swimmer size, and we derive the swimmer flows in the thin-film limit. Concentrating on the thick film case, we find that the dipole moment induces a bias towards swimmer accumulation at the no-slip wall rather than the water-air interface, but that higher-order multipole moments can oppose this. Based on the analytic predictions we propose an experimental method to find the multipole coefficient that induces circular swimming trajectories, allowing one to analytically determine the swimmer's three-dimensional position under a microscope.Comment: 35 pages, 11 figures, 5 table

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0νββ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0νββ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.1⋅10241.1\cdot 10^{24} y and 3.6⋅10233.6\cdot 10^{23} y, respectively. Additionally for 0νββ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.3⋅1022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.2⋅1021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.8⋅1022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2νββ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009

    Demonstration of an inductively coupled ring trap for cold atoms

    Get PDF
    We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
    • …
    corecore