2,712 research outputs found

    Hamiltonian flows on null curves

    Full text link
    The local motion of a null curve in Minkowski 3-space induces an evolution equation for its Lorentz invariant curvature. Special motions are constructed whose induced evolution equations are the members of the KdV hierarchy. The null curves which move under the KdV flow without changing shape are proven to be the trajectories of a certain particle model on null curves described by a Lagrangian linear in the curvature. In addition, it is shown that the curvature of a null curve which evolves by similarities can be computed in terms of the solutions of the second Painlev\'e equation.Comment: 14 pages, v2: final version; minor changes in the expositio

    Quantum Deformations and Superintegrable Motions on Spaces with Variable Curvature

    Get PDF
    An infinite family of quasi-maximally superintegrable Hamiltonians with a common set of (2N-3) integrals of the motion is introduced. The integrability properties of all these Hamiltonians are shown to be a consequence of a hidden non-standard quantum sl(2,R) Poisson coalgebra symmetry. As a concrete application, one of this Hamiltonians is shown to generate the geodesic motion on certain manifolds with a non-constant curvature that turns out to be a function of the deformation parameter z. Moreover, another Hamiltonian in this family is shown to generate geodesic motions on Riemannian and relativistic spaces all of whose sectional curvatures are constant and equal to the deformation parameter z. This approach can be generalized to arbitrary dimension by making use of coalgebra symmetry.Comment: This is a contribution to the Proc. of the O'Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 2006, Budapest, Hungary), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Superintegrable Deformations of the Smorodinsky-Winternitz Hamiltonian

    Full text link
    A constructive procedure to obtain superintegrable deformations of the classical Smorodinsky-Winternitz Hamiltonian by using quantum deformations of its underlying Poisson sl(2) coalgebra symmetry is introduced. Through this example, the general connection between coalgebra symmetry and quasi-maximal superintegrability is analysed. The notion of comodule algebra symmetry is also shown to be applicable in order to construct new integrable deformations of certain Smorodinsky-Winternitz systems.Comment: 17 pages. Published in "Superintegrability in Classical and Quantum Systems", edited by P.Tempesta, P.Winternitz, J.Harnad, W.Miller Jr., G.Pogosyan and M.A.Rodriguez, CRM Proceedings & Lecture Notes, vol.37, American Mathematical Society, 200

    On the Reliability of the Langevin Pertubative Solution in Stochastic Inflation

    Full text link
    A method to estimate the reliability of a perturbative expansion of the stochastic inflationary Langevin equation is presented and discussed. The method is applied to various inflationary scenarios, as large field, small field and running mass models. It is demonstrated that the perturbative approach is more reliable than could be naively suspected and, in general, only breaks down at the very end of inflation.Comment: 7 pages, 3 figure

    Binary trees, coproducts, and integrable systems

    Get PDF
    We provide a unified framework for the treatment of special integrable systems which we propose to call "generalized mean field systems". Thereby previous results on integrable classical and quantum systems are generalized. Following Ballesteros and Ragnisco, the framework consists of a unital algebra with brackets, a Casimir element, and a coproduct which can be lifted to higher tensor products. The coupling scheme of the iterated tensor product is encoded in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new appendices adde
    corecore