14 research outputs found
Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells
AbstractBackgroundAdult endothelial progenitor cells (EPC) may be a useful source for engineering the endothelialization of vascular grafts. However, the optimal factors that promote differentiation of EPCs into endothelium remain to be elucidated. The goal of this current report was to determine which extracellular matrix (ECM) protein might modulate or enhance the effects of EPCs on differentiation into mature endothelium.MethodsHuman EPCs (CD34+ cells) were cultured in ECM-coated six-well plates in MCDB-131 medium containing vascular endothelial growth factor (VEGF), insulin-like growth factor−1, and basic fibroblast growth factor. After 21 days, differentiated endothelial colonies were confirmed by immunofluorescence for von Willebrand factor (vWF) and vascular-endothelial (VE)-cadherin and mRNA expression of the endothelial markers Flk-1, vWF, and VE-cadherin. Cell migration toward the VEGF–matrix protein combinations was also measured.ResultsAs judged by positive staining for endothelial markers vWF and VE-cadherin, the combination of VEGF with fibronectin (FN) produced significantly more endothelial colonies (P < .05) than did collagens I or IV or vitronectin. Defined fragments of FN did not enhance VEGF-mediated effects. Fibrinogen produced intermediate stimulation of differentiation. FN also enhanced VEGF-mediated CD34+ cell migration. Blockade of α5β1, but not αvβ3 or αvβ5, inhibited both VEGF-mediated CD34+ cell differentiation and migration.ConclusionsVEGF and FN together significantly promote the migration and differentiation of CD34+ cells. This synergism is specific to FN and the α5β1 integrin. Combinations of VEGF and FN may be useful in promoting differentiation of circulating endothelial progenitors into endothelial cells for tissue engineering.Clinical relevanceTreatment of injured or diseased tissues with adult stem cells is a promising approach. In particular, bone marrow derived circulating endothelial progenitors (CEP’s) have been shown to differentiate into endothelial cells in vitro and promote tissue revascularization of ischemic limbs and myocardium in vivo. Because of the relative ease of obtaining CEP’s and as well as its high proliferative rate, CEP’s may have clinical potential for endothelialization of prosthetic vascular grafts and revascularization of injured myocardium. However, there is a need to better understand the molecular pathways involved in the proliferation and differentiation of CEP’s to take full advantage of its clinical potential
Modulation of vascular smooth muscle cell phenotype by STAT-1 and STAT-3
ObjectiveSmooth muscle cell (SMC) de-differentiation is a key step that leads to pathological narrowing of blood vessels. De-differentiation involves a reduction in the expression of the SMC contractile genes that are the hallmark of quiescent SMCs. While there is considerable evidence linking inflammation to vascular diseases, very little is known about the mechanisms by which inflammatory signals lead to SMC de-differentiation. Given that the Signal Transducers and Activators of Transcription (STAT) transcriptional factors are the key signaling molecules activated by many inflammatory cytokines and growth factors, the aim of the present study was to determine if STAT transcriptional factors play a role SMC de-differentiation.Methods and resultsUsing shRNA targeted to STAT-1 and STAT-3, we show by real time RT-PCR and Western immunoblots that STAT-1 significantly reduces SMC contractile gene expression. In contrast, STAT-3 promotes expression of SMC contractile genes. Over-expression studies of STAT-1 and STAT-3 confirmed our observation that STAT-1 down-regulates whereas STAT-3 promotes SMC contractile gene expression. Bioinformatics analysis shows that promoters of all SMC contractile genes contain STAT binding sites. Finally, using ChIP analysis, we show that both STAT-1 and STAT-3 associate with the calponin gene.ConclusionThese data indicate that the balance of STAT-1 and STAT-3 influences the differentiation status of SMCs. Increased levels of STAT-1 promote SMC de-differentiation, whereas high levels of STAT-3 drive SMC into a more mature phenotype. Thus, inhibition of STAT-1 may represent a novel target for therapeutic intervention in the control of vascular diseases such as atherosclerosis and restenosis
Heparin-II Domain of Fibronectin Is a Vascular Endothelial Growth Factor-Binding Domain: Enhancement of VEGF Biological Activity by a Singular Growth Factor/Matrix Protein Synergism
We describe extracellular interactions between fibronectin (Fn) and vascular endothelial growth factor (VEGF) that influence integrin-growth factor receptor crosstalk and cellular responses. In previous work, we found that VEGF bound specifically to fibronectin (Fn) but not vitronectin or collagens. Herein we report that VEGF binds to the heparin-II domain of Fn and that the cell-binding and VEGF-binding domains of Fn, when physically linked, are necessary and sufficient to promote VEGF-induced endothelial cell proliferation, migration, and Erk activation. Using recombinant Fn domains, the C-terminal heparin-II domain of Fn (type III repeats 13 to 14) was identified as a key VEGF-binding site. Mutation of the heparin-binding residues on FnIII(13–14) abolished VEGF binding, and peptides corresponding to the heparin-binding sequences in FnIII(13–14) inhibited VEGF binding to Fn. Fn fragments containing both the α(5)β(1) integrin-binding domain (III 9 to 10) and the VEGF-binding domain (III 13 to 14) significantly enhanced VEGF-induced EC migration and proliferation and induced strong phosphorylation of the VEGF receptor and Erk. Neither the cell-binding or VEGF-binding fragment of Fn alone had comparable VEGF-promoting effects. These results suggest that the mechanism of VEGF/Fn synergism is mediated extracellularly by the formation of a novel VEGF/Fn complex requiring both the cell-binding and VEGF-binding domains linked in a single molecular unit. These data also highlight a new function for the Fn C-terminal heparin-binding domain that may have important implications for angiogenesis and tumor growth
Induction of the urokinase plasminogen activator system by oncostatin M promotes endothelial migration
Oncostatin M (OSM) is an inflammatory cytokine produced by activated macrophages and T-lymphocytes. We have previously demonstrated that OSM-induced endothelial cell migration, unlike endothelial cell proliferation and spindle formation, is independent of basic fibroblast growth factor expression (Wijelath et at. [1997] J. Cell. Sci. 110:871-879). To better understand the mechanism of OSM-induced endothelial cell migration, this study examined the potential role of the plasminogen activator system in promoting OSM mediated endothelial cell migration. OSM stimulated increased mRNA levels of urokinase-plasminogen activator (uPA) and urokinase-plasminogen activator receptor (uPAR) in a time and dose-dependent manner. Transcriptional run-off and mRNA stability analysis demonstrated that the increase in uPA and uPAR mRNA levels was due to both increased gene transcription and mRNA stability. The increase in mRNA correlated with increased protein levels of both uPA and uPAR. This increase was reflected in elevated levels of membrane-bound plasmin activity. OSM-induced endothelial cell migration was only partially dependent on plasmin activity since incubating endothelial cells without plasminogen or, in the presence of aprotinin, resulted in suppression of endothelial cell migration, indicating that OSM promoted endothelial cell migration through both a plasmin-dependent and independent mechanism. Our results imply a role for OSM in promoting endothelial cell migration via a plasmin-dependent pathway and a uPAR-mediated pathway. Together, these and other recent studies support a role for OSM in modulating the different phases of angiogenesis. (C) 2000 Wiley-Liss, Inc
Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity
Interactions between integrins and growth factor receptors play a critical role in the development and healing of the vasculature. This study mapped two binding domains on fibronectin (FN) that modulate the activity of the angiogenic factor, vascular endothelial growth factor (VEGF). Using solid-phase assays and surface plasmon resonance analysis, we identified two novel VEGF binding domains within the N- and C-terminus of the FN molecule. Native FN bound to VEGF enhanced endothelial cell migration and mitogen-activated protein (MAP) kinase activity, but FN that is devoid of the VEGF binding domains failed to do so. Coprecipitation studies confirmed a direct physical association between VEGF receptor-2 (Flk-1) and the FN integrin, α
5
β
1
, which required intact FN because FN fragments lacking the VEGF binding domains failed to support receptor association. Thrombin-activated platelets released intact VEGF/FN complexes, which stimulated endothelial cell migration and could be inhibited by soluble high affinity VEGF receptor 1 and antibodies to α
5
β
1
integrin. This study demonstrates that FN is potentially a physiological cofactor for VEGF and provides insights into mechanisms by which growth factor receptors and integrins cooperate to influence cellular behavior.
</jats:p