264 research outputs found
Active Vibration Control Analysis of Cantilever Pipe Conveying Fluid Using Smart Material
In this paper, experimental and simulation studies in active vibration of smart cantilever pipe conveying fluid have been presented to investigate the open and closed loop time responses. A program to simulate the active vibration reduction of stiffened pipe with piezoelectric sensors and actuators was written in the ANSYS workbench and Parametric Design Language (APDL). This makes use of the finite element capability of ANSYS and incorporates an estimator based on optimal linear quadratic control (LQR) schemes to investigate the open and closed loop time responses. The procedures are tested by active control for free and forced vibrations of piezoelectric smart cantiliver pipe conveying fluid. Harmonic excitation is considered in the forced vibration. Experiments have been done to verify with simulations. Smart pipe consists of aluminum pipe surface glued piezoelectric patches of MIDÉ QuickPack QP20W transducers. An experimental result is acquired by LabVIEW programs. It is found the location of the piezoelectric actuator has in influence on the response of the cantilever pipe. The displacement increases when the actuators are moved closer to the clamped. This is due to the higher strain developed near the clamped . The control performance decrease with increasing the flow velocity due to increased coriolis force.The better performance of control occur at minimum velocity(Q=10L/min) and location1 of actuator, the maximum reduced the displacement response from +8mm to 1mm. Keywords: Active vibration control, LQR, cantilever pipe, smart structure, Smart material, piezoelectric
An energy consumption minimization approach in wireless sensor networks
There is no doubt that the most challenging aspect in the wireless sensor networks (WSN) is the lifetime, due to limitations in their energy. WSN depends on a specific group of sensor nodes to gather the data from other nodes and forward it to the base station (BS). These nodes are called cluster heads. Having reliable cluster head’s (CH) means longer life to the network. In this paper, a versatile calculation has been acquainted and analyzed for selecting the CH that maintains the least vitality utilization in the network with appropriate life time during every correspondence round. The altered methodology depends on the improved calendar of the time division multiple access (TDMA) plans. This methodology is created to decide the next CH based on lifetime, expended vitality, number of CH’s, and the frequent contact to the BS. A comparative analysis is introduced, the proposed algorithm assistant cluster heads (ACHS) shows energizing outcomes in vitality utilization in WSNs just as expanding the general system dependability with reasonable viability and productivity in terms of lifetime. The ACHS strategy shows a decrease in the WSN vitality utilization up to about 25% and shows an expansion in the system life time by 30% than the upgraded timetable of time TDMA plan approach
Monitoring the Vegetation and Water Content of Al-Hammar Marsh Using Remote Sensing Techniques
The object of the presented study was to monitor the changes that had happened in the main features (water, vegetation, and soil) of Al-Hammar Marsh region. To fulfill this goal, different satellite images had been used in different times, MSS 1973, TM 1990, ETM+ 2000, 2002, and MODIS 2009, 2010. A new technique of the unsupervised classification called (Color Extracting Technique) was used to classify the satellite images. MATLAP programming used the technique and separated Al-Hammar Marsh from other water features (rivers, irrigated lands, etc.) when calculated the changes in the water content of the study region. ArcGIS 9.3 (arcMAP, arcToolbox) were used to achieve this work and calculate area of each class
An Analytical Investigation of Thermal Buckling Behavior of Composite Plates Reinforced by Carbon Nano Particles
The research used analytical and numerical methods to test thermal buckling activity for a composite plate structure with a range of Nano fractions. Experimental program with mechanical properties for the Nano composites were carried out and have been validated from previous work. In addition, both mechanical and thermal expansions were tested from previous work experimentally and used in numerical and analytical methods by the Nano composite. The general motion equation for thermal buckling load was derived and then, the results were compared with the numerical results. The analysis showed that the average outcome error was not greater (2.49%). Ultimately, the results showed that the thermal effect results in a buckling of Nano particle strengthening (1%) volume fraction for the adjusted structure of the plate leads to increase thermal buckling strength (63,4%). This achievement modified a high thermal buckling strength with low percentage of Nano volume fraction compared to the previous work in this field
BOUNDARY ELEMENTS MODELLING FOR SMALL/LARGE STRAIN ANALYSIS OF ELASTOMERIC MATERIALS
In this paper the boundary elements method is used as numerical techniques for solving elastomeric materials (rubber or rubber-like materials) under small and large strains analysis. Under small deformations, the formulations are based on assuming that the elastomer is linear elastic isotropic incompressible solid. While for the large deformation, the formulation is based on decomposing the 1st Piola-Kirchhoff stresses into linear and nonlinear parts. Thereafter, the final derived equations are composed of both boundary integral and non-linear domain integrals. The non-linear analyses were performed using an incremental procedure with an iterative algorithm.
Solving some numerical examples and comparing the results with that obtained from some available results and ANSYS 10.0 showed that the boundary elements method is a good numerical technique for solving incompressible elastomeric materials. And the formulation used for the boundary elements derivations for large strain analysis gave satisfactory results as compared with that of ANSYS ver. 10.0
Praziquantel coverage in schools and communities targeted for the elimination of urogenital schistosomiasis in Zanzibar: a cross-sectional survey
© 2015 Knopp et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article
A Suggested Analytical Solution For Laminated Closed Cylindrical Shells Using General Third Shell Theory (G.T.T.)
Transient solutions will be developed for laminated simply supported closed cylindrical shells subjected to a uniform dynamic pressure at the outer surface of the cylinder. These solutions are obtained by using General Third Shell Theory (G.T.T.). Rectangular pulse, triangular pulse, sinusoidal ulse and (ramp-constant) load-time varying functions are studied and the required equilibrium equations are developed. The central deformation and principle stresses are investigated for different cross-ply laminates
- …