1,620 research outputs found
The physics and modes of star cluster formation: simulations
We review progress in numerical simulations of star cluster formation. These
simulations involve the bottom-up assembly of clusters through hierarchical
mergers, which produces a fractal stellar distribution at young (~0.5 Myr)
ages. The resulting clusters are predicted to be mildly aspherical and highly
mass-segregated, except in the immediate aftermath of mergers. The upper
initial mass function within individual clusters is generally somewhat flatter
than for the aggregate population. Recent work has begun to clarify the factors
that control the mean stellar mass in a star-forming cloud and also the
efficiency of star formation. The former is sensitive to the thermal properties
of the gas while the latter depends both on the magnetic field and the initial
degree of gravitational boundedness of the natal cloud. Unmagnetized clouds
that are initially bound undergo rapid collapse, which is difficult to reverse
by ionization feedback or stellar winds.Comment: 21 pages, 10 figures. To appear as invited review article in a
special issue of the Phil. Trans. Royal Soc. A: Ch. 3 "Star clusters as
tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer
reviewed. LaTeX, requires rspublic.cls style fil
Recommended from our members
Service user involvement in the evaluation of psycho-social intervention for self-harm: a systematic literature review
Background: The efficacy of interventions and treatments for self-harm is well researched. Previous reviews of the literature have highlighted the lack of definitively effective interventions for self-harm and have highlighted the need for future research. These recommendations are also reflected in clinical guidelines published by the National Institute for Health and Clinical Excellence (NICE, 2004) which also call for service user involvement in studies of treatment efficacy. Aims: A systematic review was undertaken to determine i) what contributions service users have made to the evaluation of psychosocial interventions ii) by what methods have service users been involved iii) in what ways could service user involvement supplement empirical evidence for interventions
On the fidelity of the core mass functions derived from dust column density data
Aims: We examine the recoverability and completeness limits of the dense core
mass functions (CMFs) derived for a molecular cloud using extinction data and a
core identification scheme based on two-dimensional thresholding.
Methods: We performed simulations where a population of artificial cores was
embedded into the variable background extinction field of the Pipe nebula. We
extracted the cores from the simulated extinction maps, constructed the CMFs,
and compared them to the input CMFs. The simulations were repeated using a
variety of extraction parameters and several core populations with differing
input mass functions and differing degrees of crowding.
Results: The fidelity of the observed CMF depends on the parameters selected
for the core extraction algorithm for our background. More importantly, it
depends on how crowded the core population is. We find that the observed CMF
recovers the true CMF reliably when the mean separation of cores is larger than
their mean diameter (f>1). If this condition holds, the derived CMF is accurate
and complete above M > 0.8-1.5 Msun, depending on the parameters used for the
core extraction. In the simulations, the best fidelity was achieved with the
detection threshold of 1 or 2 times the rms-noise of the extinction data, and
with the contour level spacings of 3 times the rms-noise. Choosing larger
threshold and wider level spacings increases the limiting mass. The simulations
show that when f>1.5, the masses of individual cores are recovered with a
typical uncertainty of 25-30 %. When f=1 the uncertainty is ~60 %. In very
crowded cases where f<1 the core identification algorithm is unable to recover
the masses of the cores adequately. For the cores of the Pipe nebula f~2.0 and
therefore the use of the method in that region is justified.Comment: 9 pages, 6 figures, accepted for publication in A&
Radiative Transfer in Prestellar Cores: A Monte Carlo Approach
We use our Monte Carlo radiative transfer code to study non-embedded
prestellar cores and cores that are embedded at the centre of a molecular
cloud. Our study indicates that the temperature inside embedded cores is lower
than in isolated non-embedded cores, and generally less than 12 K, even when
the cores are surrounded by an ambient cloud of small visual extinction (Av~5).
Our study shows that the best wavelength region to observe embedded cores is
between 400 and 500 microns, where the core is quite distinct from the
background. We also predict that very sensitive observations (~1-3 MJy/sr) at
170-200 microns can be used to estimate how deeply a core is embedded in its
parent molecular cloud. Finally, we present preliminary results of asymmetric
models of non-embedded cores.Comment: 8 pages, 15 figures, to appear in the conference proceedings of "Open
Issues in Local Star Formation and Early Stellar Evolution", held in Ouro
Preto (Brazil), April 5-10, 200
Sensitive Limits on the Water Abundance in Cold Low Mass Molecular Cores
We present SWAS observations of water vapor in two cold star-less clouds, B68
and Core D in rho Ophiuchus. Sensitive non-detections of the 1(10)-1(01)
transition of o-H2O are reported for each source. Both molecular cores have
been previously examined by detailed observations that have characterized the
physical structure. Using these rather well defined physical properties and a
Monte-Carlo radiation transfer model we have removed one of the largest
uncertainties from the abundance calculation and set the lowest water abundance
limit to date in cold low-mass molecular cores. These limits are < 3 x 10^{-8}
(relative to H2) and < 8 x 10^{-9} in B68 and rho Oph D, respectively. Such low
abundances confirm the general lack of ortho-water vapor in cold (T < 20 K)
cores. Provided that the ortho/para ratio of water is not near zero, these
limits are well below theoretical predictions and appear to support the
suggestion that most of the water in dense low-mass cores is frozen onto the
surfaces of cold dust grains.Comment: 12 pages, 3 figures, accepted by Astrophysical Journal Letter
The Intrinsic Shapes of Molecular Cloud Fragments over a Range of Length Scales
We decipher intrinsic three-dimensional shape distributions of molecular
clouds, cloud cores, Bok globules, and condensations using recently compiled
catalogues of observed axis ratios for these objects mapped in carbon monoxide,
ammonia, through optical selection, or in continuum dust emission. We apply
statistical techniques to compare assumed intrinsic axis ratio distributions
with observed projected axis ratio distributions. Intrinsically triaxial shapes
produce projected distributions which agree with observations. Molecular clouds
mapped in CO are intrinsically triaxial but more nearly prolate than
oblate, while the smaller cloud cores, Bok globules, and condensations are also
intrinsically triaxial but more nearly oblate than prolate.Comment: 12 pages, 11 figures. Version with color figures can be found at
http://www.astro.uwo.ca/~cjones/ or http://www.astro.uwo.ca/~basu/. To appear
in ApJ, 10 April 2002, v. 569, no.
Spectroscopic Detection of a Stellar-like Photosphere in an Accreting Protostar
We present the first spectrum of a highly veiled, strongly accreting
protostar which shows photospheric absorption features and demonstrates the
stellar nature of its central core. We find the spectrum of the luminous (L_bol
= 10 L_sun) protostellar source, YLW 15, to be stellar-like with numerous
atomic and molecular absorption features, indicative of a K5 IV/V spectral type
and a continuum veiling r_k = 3.0. Its derived stellar luminosity (3 L_sun) and
stellar radius (3.1 R_sun) are consistent with those of a 0.5 M_sun
pre-main-sequence star. However, 70% of its bolometric luminosity is due to
mass accretion, whose rate we estimate to be 1.6 E-6 M_sun / yr onto the
protostellar core. We determine that excess infrared emission produced by the
circumstellar accretion disk, the inner infalling envelope, and accretion
shocks at the surface of the stellar core of YLW 15 all contribute signifi-
cantly to its near-IR continuum veiling. Its projected rotation velocity v sin
i = 50 km / s is comparable to those of flat-spectrum protostars but
considerably higher than those of classical T Tauri stars in the rho Oph cloud.
The protostar may be magnetically coupled to its circumstellar disk at a radius
of 2 R_*. It is also plausible that this protostar can shed over half its
angular momentum and evolve into a more slowly rotating classical T Tauri star
by remaining coupled to its circumstellar disk (at increasing radius) as its
accretion rate drops by an order of magnitude during the rapid transition
between the Class I and Class II phases of evolution. The spectrum of WL 6 does
not show any photospheric absorption features, and we estimate that its
continuum veiling is r_k >= 4.6. Together with its low bolometric luminosity (2
L_sun), this dictates that its central core is very low mass, ~0.1 M_sun.Comment: 14 pages including 9 figures (3 figures of 3 panels each, all as
separate files). AASTeX LaTex macros version 5.0. To be published in The
Astronomical Journal (tentatively Oct 2002
- …